Beyond Incineration:
Best Waste Management Strategies for Montgomery County, Maryland

Prioritizing:
• Cost-effectiveness
• Human health & safety
• Climate protection
• Continuous waste reduction

Prepared for:
County Executive Marc Elrich

By: Zero Waste Montgomery County

Underwritten by:
Sugarloaf Citizens’ Association
www.sugarloafcitizens.org

Principal Author:
Mike Ewall, Esq.
Energy Justice Network
215-436-9511
mike@energyjustice.net
www.energyjustice.net

With technical analysis and contributions from:
Deborah Cohn, Esq. Montgomery County resident
Kelly Doordan, M.S.E.S., J.D. Montgomery County resident
Susan Eisendrath, M.P.H. Montgomery County resident
Lauren Greenberger, M.H.Sc. Montgomery County resident
Mike Krauss Rail-haul Consultant
Joe Libertelli, J.D. Montgomery County resident
Amy Maron, M.P.P. Montgomery County resident
Jeffrey Morris, Ph.D. Sound Resource Management Group
Scott Rockafellow, M.B.A. Montgomery County resident
Neil Seldman, Ph.D. Institute for Local Self-Reliance

March 2021
www.energyjustice.net/md/beyond.pdf

© 2021 Energy Justice Network. Beyond Incineration is made available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license subject to the conditions specified at www.energyjustice.net/ip
Contents

Executive Summary ... 6
A. Historical Context .. 6
B. Current Context .. 6
C. Summary of Findings ... 7
D. Montgomery County Waste Disposal Options ... 12
E. Conclusion ... 12
F. Recommendations .. 13
G. Report Overview ... 14

Chapter 1: Zero Waste Strategies Have More Potential than DEP & HDR Portray 15
A. What is Zero Waste? ... 15
B. Unit-Based Pricing / Save as You Throw ... 16
C. Coordination with Climate Action Plan ... 19

Chapter 2: The Case Against Incineration ... 23
A. No Penalty for Exiting Incinerator Contracts Early ... 23
The County Can End its Incineration Contract at any Time .. 23
The County can Stop Sending Incinerator Ash to Landfill at any Time ... 24
B. The County’s Trash Incinerator is a Major Polluter .. 25
Covanta compares emissions of select pollutants from incineration to transportation and heating
sector sources to make their emissions look relatively small ... 26
Covanta compares incinerator emissions to larger industries without adjusting for size 27
Boasting industry-wide emission reductions that are mostly the result of facilities closing 31
Dioxins and furans are still produced at dangerously high levels in newer and older incinerators ... 32
Inadequate emissions testing may underestimate true emissions levels .. 33
Test data may be manipulated ... 33
Weak and outdated permit limits make incineration appear healthy and safe 34
Permitted emissions limits are not based on health and safety ... 40
Existing trash incinerators like MCRRF can reduce air pollution with more stringent controls 41

Chapter 3: Greenhouse Gases & Creative Accounting ... 43
A. Analysis of WARM and MEBCalc Models and Underlying Assumptions ... 46
B. Biogenic carbon – to count or not to count? .. 47
C. Displacement of fossil fueled electric generation ... 52
D. Displacement of landfill emissions ... 53
E. Landfill gas capture rate .. 53
F. Assuming conventional landfilling is the only alternative .. 54
Executive Summary

This report documents what decision makers and the public need to know about the options for managing our discarded materials. A recent series of reports prepared by HDR Consultants, as well as a draft of the county’s Ten-Year Solid Waste Management Plan currently under review, neglect to examine the full negative impacts of continuing to use the county’s trash incinerator. Nor did either provide a robust visionary analysis of all the potential solutions existing today for the county to pursue. This report provides detailed analysis of the negative impacts of incineration to lay bare the reasons why we must stop using this method of waste management and how to pivot to more sustainable solutions.

A. Historical Context

The Montgomery County Resource Recovery Facility (MCRRF or RRF) trash incinerator started operating in May 1995, amid much controversy. It was at a time when landfill space was thought to be more limited, and when unscientific myths about turning “waste into energy” and “trash into steam” still seduced decision-makers.1 Over 230 new trash incinerators were built in the United States between 1975 and 1995, yet over 160 of these incinerators have closed since 1980, leaving about 74 in operation today, with at least three more expected to close in the next 1-2 years. Of those still operating today, MCRRF was the last incinerator built at a new site, despite hundreds of unsuccessful attempts to build new incinerators across the country since then.

B. Current Context

Since the MCRRF debt was fully repaid in 2016, canceling the contract with Covanta can be done at any time with 180 days’ notice and there is no longer any penalty for cancellation.2 As a result, the County is free to consider all waste disposal options without contractual constraints.

In addition to the changing financial landscape, the environmental context in which the MCRRF operates has also changed. We are now aware that trash incineration is the most expensive and polluting way to manage waste or to make energy, and that waste doesn’t magically disappear when burned, but threatens the climate and public health with air pollution and with toxic ash that makes landfills even more dangerous than if unburned waste were landfilled directly. Incinerating is more polluting than burning coal, and is more harmful to health and the environment than directly using landfills.3

Generally speaking, landfills are a problem, but incineration and landfilling ash byproduct is the bigger problem. It’s not the size of landfills that is harmful, but their toxicity. Landfills harm groundwater when they leak, and release harmful gases into the air (not just greenhouse gases). Incinerators, however, release far more air pollution, and fill landfills with toxic ash. The combustion process creates new toxic chemicals that are released into the air and ash. Landfilling ash is more dangerous to the groundwater and nearby community than landfilling unburned trash.

1 Energy Justice Network, “Incinerators are NOT ‘waste-to-energy’ facilities,” www.energyjustice.net/ incineration/waste-to-energy
3 Mike Ewall, “Landfills are bad, but incinerators (with ash landfilling) are worse,” Energy Justice Network factsheet. www.energyjustice.net/files/incineration/incineration_vs_landfills.pdf; see also www.energyjustice.net/incineration/worsethancoal
C. Summary of Findings

This report outlines the current understandings of the health, climate, and environmental justice impacts of incineration and landfilling Montgomery County’s waste. This report’s findings include:

1. The MCRRF trash incinerator is now the county’s largest industrial air polluter. It is the county’s largest single source of greenhouse gases, ammonia, arsenic, beryllium, cadmium, chromium (VI), hydrochloric acid, mercury, nitrogen oxides, particulate matter (PM10), fine particulate matter (PM2.5), and sulfur dioxide and is the county’s second largest source of lead emissions.

2. Actual levels of greenhouse gas (GHG) pollution from the incinerator are 50 times greater than claimed in the reports provided by the County Department of Environmental Protection (DEP).

3. Proponents of incineration consistently rely on outdated science and misinformation to minimize and discount the negative environmental impacts of the industry.

4. Due to limited monitoring, claims that the facility is well within permit limits are not reassuring since most pollutants are tested just once a year, not with continuous emissions monitors.

5. If built in the last decade, MCRRF would not be legal to operate without having to install expensive pollution control upgrades. The reagents needed to reduce toxic emissions are also problematic because their very production and disposal is an additional environmental hazard. Older incinerators are held to weaker standards than newer ones. Bringing the incinerator up to modern standards would be financially prohibitive.

6. Operating the incinerator until 2026 or 2040 would be quite expensive, as the facility has not been well-maintained and many repairs are needed as it ages. Costs will continue to rise. Costs will not drop as much with declining waste generation, as with landfills, due to the bulk of the incinerator’s expenses being fixed costs that do not depend on the volume processed.

7. Although the incinerator has been presented as an affordable option because the bonds to finance it were paid off by taxpayers in 2016, it is now aging and in need of significant additional capital investments of $12-73 million just to maintain operations through 2026 or 2040. If the county chose to keep the incinerator running, it would be unethical not to upgrade to meet modern emission control standards. Upgrading to modern emissions control technology required at incinerators permitted in the past decade would incur substantial additional costs on the order of another $95 million – money better spent on Zero Waste alternatives.

8. The county has already permitted a concentration of many noxious facilities in the Dickerson area. Replacing the Incinerator with a new “Site 2” landfill on land currently being productively farmed would threaten regional drinking water and the sole-source aquifer in the county’s Agricultural Reserve. It would be a shortsighted and costly diversion of financial resources that could better be used to divert physical resources with investments in Zero Waste infrastructure.

9. Montgomery County annually dumps about 180,000 tons of toxic incinerator ash in a heavily populated majority-Black community in Virginia. This is a long-standing environmental racism trend that can be ended by choosing a landfill community that reflects environmental justice criteria and a more remote location affecting fewer people.
10. The county’s use of ash as daily landfill cover material and for internal roads in the landfill is especially dangerous, as it can blow into the community, causing even more harm. Any landfill community is put at higher risk of toxic exposure when sending incinerator ash instead of unburned trash.

11. In a new analysis prepared for this report, we applied the MEBCalc life cycle assessment model to Montgomery County’s waste options. We compare using the MCRRF to using any of ten landfills in Pennsylvania, Virginia, and Ohio via truck or rail. The analysis shows that incineration is far worse than landfilling in any of these locations overall, and in terms of global warming pollution, and emissions of nitrogen oxides, particulate matter, acid gases, toxic chemicals, and chemicals that form smog. Factoring in transportation emissions and using a 20-year time frame (unfavorable to landfills on climate, due to short-term impact of leaking methane gas), greenhouse gas emissions are 66-160% higher from incineration than landfilling. Emissions of acid gases from incineration are 86-2,735% higher, fine particulate matter (PM2.5) emissions are 1,741-13,268% higher, and emissions of toxic pollutants are 5,258-24,529% higher. While ozone-depleting chemicals are emitted from landfills in tiny quantities that are not released from incinerators, and some other small pollutants are worse from landfills if landfill gas is burned in internal combustion engine. When a single “combined” score is assigned by monetizing the nine environmental and health impacts studied, incineration at MCRRF is calculated to be 151-394% more costly than landfilling Montgomery County’s trash. Put more simply, the health and environmental costs of incinerating the county’s trash are 2.5 to 5 times as harmful as landfilling.

Table ES-1: Results of Life Cycle Analysis of Montgomery County’s incineration vs. landfilling options

<table>
<thead>
<tr>
<th>Impact per ton of waste transported and incinerated or landfilled</th>
<th>Measure (lbs of equivalent emission, below, per ton of waste)</th>
<th>Incineration (MCRRF) (lbs/ton of waste)</th>
<th>Landfilling (range of 10 landfills) (lbs/ton of waste)</th>
<th>Which is worse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td>Carbon dioxide (CO₂)</td>
<td>2,023.89</td>
<td>779 – 1,220</td>
<td>Incineration</td>
</tr>
<tr>
<td>Human health (toxic chemicals)</td>
<td>Toluene</td>
<td>219.80</td>
<td>0.89 – 4.10</td>
<td>Incineration</td>
</tr>
<tr>
<td>Smog formation (asthma)</td>
<td>Ozone (O₃) [NOx & VOCs]</td>
<td>38.64</td>
<td>2.43 – 15.51</td>
<td>Incineration</td>
</tr>
<tr>
<td>Acidification (acid rain, respiratory)</td>
<td>Sulfur dioxide (SO₂)</td>
<td>2.38</td>
<td>0.08 – 1.28</td>
<td>Incineration</td>
</tr>
<tr>
<td>Human health (carcinogens)</td>
<td>Benzene</td>
<td>0.46</td>
<td>0.005 – 1.19</td>
<td>* (Depends)</td>
</tr>
<tr>
<td>Human health (respiratory/heart)</td>
<td>Fine particulate matter (PM₂.₅)</td>
<td>0.23</td>
<td>0.001 – 0.012</td>
<td>Incineration</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>Nitrogen</td>
<td>0.07</td>
<td>0.036 – 0.159</td>
<td>* (Depends)</td>
</tr>
<tr>
<td>Ozone depletion</td>
<td>CFC-11</td>
<td>0</td>
<td>0.001 – 0.004</td>
<td>Landfilling</td>
</tr>
<tr>
<td>Eco-toxicity</td>
<td>2,4-D herbicide</td>
<td>0.00088</td>
<td>0.00002 – 0.00128</td>
<td>* (Depends)</td>
</tr>
<tr>
<td>Monetized summary</td>
<td>U.S. Dollars</td>
<td>$258.58</td>
<td>$52.37 – $102.97</td>
<td>Incineration</td>
</tr>
</tbody>
</table>

Note: each measure includes weighted values of related pollutants. For example, global warming impacts include methane and nitrous oxide (N₂O) emissions, and toxic chemical impacts include mercury emissions. Impacts are weighted over a 20-year time frame. Landfill options assume a gas capture rate of 75%.

* Carcinogenicity, eutrophication, and eco-toxicity are worse from incineration compared to a landfill that flares its gas, but are worse from landfilling if landfill gas is burned for energy in an internal combustion engine.

* Calculated using the Monetizing Environmental Benefits Calculator (MEBCalc), Sound Resource Management Group. srmginc.com/mebcalc/
12. Using this analysis, transportation emissions by truck or rail turned out to be insignificant compared to the emissions from landfilling or incineration. A long hauling distance to landfills does not create enough emissions to justify incinerating closer to where trash is produced. Transporting our waste by truck, even to a distant landfill hundreds of miles away, appears to be the cleanest, most cost-effective and most secure long-term solution.

While rail hauling is somewhat less polluting than trucking, the margin is surprisingly negligible compared to the overall pollution from incineration or landfilling. The downside of rail haul is the need to reconfigure the Shady Grove transfer station and acquire and store rail cars. This is doable but our research found that trucking may be less expensive and is far more nimble (due to much greater selection of landfill sites). It can be modified as needs change without any capital costs. Preliminary quotes obtained from firms that truck to landfills were competitive with what the county currently budgets for solid waste disposal costs. DEP should issue an RFQ to obtain current, accurate quotes on costs and readiness from vendors to meet the county’s hauling and disposal needs that is in high demand and earns money for the county.

13. Technology for capturing the landfill gas emissions from landfills has advanced. Modern landfills are generally assumed to be capturing 75% of their landfill gas, reducing their negative impact on the climate as methane is converted to CO2. At a landfill gas capture rate of any better than 50-70%, landfills emit fewer GHGs than incinerators.

14. A more thorough analysis of available landfills, conducted for this report, shows that a series of exclusion criteria can successfully avoid environmental justice problems, high populations, and higher environmental impacts. Layering on various inclusion criteria, we narrow a list of over 40 landfills to a handful of best ones that can meet the county’s needs.

15. The county should reconsider its relationship with the Northeast Maryland Waste Disposal Authority (“the Authority”). Severing ties with the Authority may be in the best interest of the county if the county is pursuing Zero Waste and the development of county (rather than regional) facilities for managing the discarded materials stream. As the county moves in the direction of Zero Waste implementation, it should develop its own policy and goals for materials management and should seek, where appropriate, contractors with Zero Waste expertise rather than the Authority’s on-call waste disposal and incinerator experts and engineers.

The Authority is financially invested in incineration and has actively kept Zero Waste experts out of their list of on-call consultants available to their member jurisdictions. There is too great a conflict of interest there for the Authority to have such control over the choices the county makes, and for the county Recycling and Resource Management Division Chief (solid waste director) to be serving both the county and – by serving on the Authority’s board – the financial interests of the Authority. The Authority should not be hiring consultants or participating in any form of guiding decision-making for the county.

16. Zero Waste strategies are capable of achieving deep reductions in waste generation. Investing in and adopting robust Zero Waste strategies can be accomplished right now, cutting waste generation by 60-70% in just a few years, and 80%+ once additional programs are in place. We can reduce the volume of waste we are sending to a landfill through upstream “rethink/redesign/reduce/reuse/recycle/compost” strategies and through specific methods to treat the remaining waste on the “back end.”
17. **Unit-based pricing** (a.k.a. “Pay as You Throw” or “Save as You Throw”) is the single most effective and cost-effective way to rapidly reduce waste.\(^5\) Over 10,000 communities use this system and it has the proven capability of reducing waste generation by an average of 44%. When combined with curbside composting collection, the diversion average reaches 70%. This can all be accomplished in a much shorter time frame than the County DEP seems to believe. Washington State, Oregon, Connecticut, and Massachusetts have model programs with established best practices the county should adopt immediately. A short-term consultant, such as Waste Zero, could quickly develop a detailed implementation plan to help the county operationalize this within the next couple of years.

18. The county already has a successful dual-stream recycling program and a very good “Strategic Plan to Advance Composting, Compost Use, and Food Scrap Diversion.”\(^6\) Portions of the “Strategic Plan” are being implemented and the county is launching a variety of food waste diversion and food scrap recycling programs for residents, the commercial sector, and county agencies. These programs should be accelerated through the establishment of a permanent, county-owned local composting facility and local composting sites. Once the county commits to terminating the incinerator contract, arrangements can and should be made with the Sugarloaf Citizens’ Association to convert the Montgomery County Yard Trim Composting Facility to a state-of-the-art composting facility that accepts food scraps/waste. Best practices such as those established at the Prince George’s Organics Composting Facility should be adopted and implemented to ensure safe, effective composting and to produce a high-quality compost product that is in high demand and earns money for the county.

19. The County should explore the “back end” of a Zero Waste system, which is known as “MRBT to landfill,” with MRBT standing for Material Recovery and Biological Treatment. Material recovery means that – after residents and businesses source separate reusables, recyclables, and compostables – the remaining trash is processed to remove additional recyclables. After that, biological treatment is used to stabilize the remaining organic fraction through either aerobic composting or anaerobic digestion. This step removes the methane gas and the water weight, saving trucking and disposal costs because there are fewer tons to haul and tip. The end-product is stabilized, to avoid generation of landfill gas, odors, and leachate when landfilled.

20. The best way to avoid greenhouse gas emissions in the county’s municipal waste system is to terminate incineration and ensure that rapidly degradable organic material like food waste is not landfilled. In landfills, the climate threat is mainly from food scraps and yard waste, which degrade most readily. Source separating these organic materials for aerobic composting is ideal. To further avoid GHG production at landfills, any food scraps and yard waste that still end up in trash cans should be handled by processing these residuals through an anaerobic digestion process prior to landfilling. Regarding plastics, EPA research shows that burning them is the worst option, while eliminating or recycling them have major climate benefits.\(^7\)

\(^5\) PayAsYouThrow.org, The Recycling Foundation. www.payasyouthrow.org

<table>
<thead>
<tr>
<th>Evaluation Factors</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to Lower Cost by Reducing Waste</td>
<td>No, due to fixed costs, including maintaining unused boiler in standby</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accommodates Zero Waste</td>
<td>Disincentivizes diversion as most efficient option is with three boilers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHG Emissions</td>
<td>2,024 lbs of CO₂ equivalents (CO₂e) per ton of waste</td>
<td>779 – 1,220 lbs of CO₂ equivalents (CO₂e) per ton of waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Impacts</td>
<td>Most toxic option for county residents and for landfill community; unquantified health impacts from air emissions and ash residue disposal</td>
<td>Potential risk to sole-source aquifer</td>
<td>Mitigated with remote location, site selection criteria, and diversion/processing of organic materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>Ash currently landfilled in majority-Black communities; clustering of facilities in Dickerson; downwind impacts on diverse county population</td>
<td>Clustering of facilities in Dickerson</td>
<td>Can select landfill in rural area that meets environmental justice selection criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to Provide Long-Term Solution</td>
<td>Annual volume larger than needed as county reduces waste, but limited to five years</td>
<td>Annual volume larger than needed as county reduces waste, but lifetime limited by aging of facility; vulnerable to abrupt closure</td>
<td>Unavailable until built, (could take 10 years depending on litigation); 30-year projected lifetime if built (depends on waste volumes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty in Cost Estimates</td>
<td>Highly variable cost estimates depend on electricity markets and outcomes of contract negotiations for share of capital improvements; decommissioning costs; pending disqualification of renewable energy credits will remove $2-7 million/year in revenue</td>
<td></td>
<td></td>
<td>Low once contract is in place; opportunity to renegotiate costs incrementally as tonnage decreases</td>
<td></td>
</tr>
<tr>
<td>Other Environmental Impacts and Considerations</td>
<td>Leaves county in search of another solution in next five years</td>
<td>Leaves county in search of another solution in <20 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Estimates for Rail Haul and Truck Haul (best options in green; worst in red)</td>
<td>$12-27 million in repairs</td>
<td>$37-$73 million in repairs</td>
<td>$100-107 million (unclear if includes cost of access road, 30-year post closure care)</td>
<td>$70 million for new rail car fleet (HDR)</td>
<td>$~1M+ to modify transfer station to accommodate long haul</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>$100-107 million</td>
<td>$70-86 million</td>
<td>$7 million/year in revenue</td>
<td>$50-60/ton, dramatically reducing waste to landfill and minimizing landfill impacts.</td>
<td></td>
</tr>
<tr>
<td>Total Estimated Cost/Ton</td>
<td>$53.50/ton (HDR) $59.56/ton (DEP)</td>
<td>$44.50/ton (HDR) $59.56/ton (DEP)</td>
<td>$73-78/ton</td>
<td>$50-59/ton</td>
<td></td>
</tr>
</tbody>
</table>

8 MEBCalc Life Cycle Analysis (see Table 4.2); EPA eGRID 2018 (see Tables 3.1 and 3.2); Transportation emissions, Chapter 3(J).
9 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020. drive.google.com/file/d/1MqFlk7Ylr0bbze20hJ9Nx-G6xOx4Ox/view (not good condition quote from p.19; S12-17m on p.20; S37-63m on p.21, $100M, $70M, & $1m figures from Table 14-2 on p.83); $73M high end for Option 2, $107M for Option 3 and $86M for Option 4 from Willie Wainer & Marilu Enciso, Montgomery County Department of Environmental Protection, “What’s left” spreadsheet in Excel workbook generated July 15, 2020 through September 25, 2020 titled “RRMM Short and Middle Term PrioritiesV15.xlsx”
11 Note 9 supra. (HDR data from Table 14-2 combining transfer station, processing and transportation costs; DEP data from “What’s left” spreadsheet). Note 116 infra. (2020 invoices); Options 4 & 5 from haul haul consultant, Mike Krauss and other sources cited in section 8 of Chapter 8’s section on Cost Estimates for Rail Haul and Truck Haul.
D. Montgomery County Waste Disposal Options

DEP considered five main options for managing the county’s waste:

- Option 1: Continue Incineration at MCRRF Through 2026 when contract expires [Status Quo]
- Option 2: Continue Incineration at MCRRF Through 2040
- Option 3: Develop a New Landfill on Site 2 in Montgomery County
- Option 4: Long Haul by Rail from Shady Grove Transfer Station to a Landfill
- Option 5: Long Haul by Truck from Shady Grove Transfer Station to a Landfill

In evaluating the relative merits of the five options, this report considers the health and well-being of Montgomery County residents, and the relative environmental and economic costs.

Estimating the costs associated with the various options is difficult when there are contradictory numbers across different reports and documents from the county and the county’s consultants. It is strongly suggested that the County issue RFQ’s to increase the reliability of the estimates before moving forward with any of the contemplated options. Continued operation of the incinerator appears to be relatively expensive in terms of both operating and capital expenditure.

Long-hauling solid waste by truck or rail opens up the potential for the County to approach 2040 without the risk of running out of disposal capacity and having to find or finance new solid waste disposal facilities or rebuild or expand costly existing ones. Once hauling contracts are in place, the County can instead focus for the next twenty years on aggressively reducing waste through the many programs and policies recommended by HDR and the Zero Waste Task Force. In other words, Options 1-3 delay the decision and are difficult to turn back from once capital investments are underway, while Options 4 and 5 present longer-term solutions, with Option 5 the most flexible and affordable.

E. Conclusion

The county is at a critical fork in the road as we are faced with two starkly different options for managing our solid waste. We can either continue to use the unsafe, unhealthy, unjust, costly, and high carbon footprint method of incineration for our waste disposal, or immediately start a process to transfer our waste to a well-managed landfill while implementing proven Zero Waste programs to reduce our waste production, and treat any residual waste to minimize landfill impacts.

Given the higher costs and pollution from continuing incineration or building a new landfill, and also considering the impacts on any landfill communities, it makes more sense to discontinue further use of the incinerator, and redirect funds that would repair the incinerator into Zero Waste programs to minimize landfill impacts. Trucking to existing landfills provides the cheapest and most flexible option, freeing up the funding to finance Zero Waste infrastructure like material recovery and biological treatment (MRBT). Alternatively, the county could contract with a private vendor to provide those facilities at a competitive cost to current waste disposal rates.
F. Recommendations

After careful evaluation of the various options, we are recommending the following path forward:

1) Starting in calendar year 2021, the county should accurately account for waste diversion.
 a. Stop counting ash as “beneficial use” in county recycling percentages.12
 b. Correct recycling reporting by not counting alternative daily cover (ADC) at landfills, or material sent to material recovery facilities (MRFs) that is not ultimately recycled.

2) Seek County Council approval for the following changes to the Waste Disposal and Service Agreements, as required in the County’s Ten-Year Solid Waste Management Plan.13,14

3) On or before Earth Day (4/22/2021), issue the following RFPs and notices:
 a. Issue an RFP for truck hauling to a landfill, utilizing the exclusion and inclusion criteria outlined within this report in order to make the most responsible choice.15
 b. Give 180-day notice to the Northeast Maryland Waste Disposal Authority (NMWDA) to end the incineration contract (by 10/18/2021, if notice is given on 4/22/2021).
 c. Issue request for proposals (RFP) for a new material recovery facility (MRF) with material recovery and biological treatment (MRBT) capacity.

4) On Earth Day, announce aggressive pursuit of Zero Waste strategies ready to be rolled out in 2021. Priority programs, even if just starting as pilots in 2021, should include unit-based pricing, aerobic composting of source separated organics, and a deconstruction mandate for reusable building materials.

By October 2021, cease use of the MCRRF and switch to truck hauling to one or more existing landfills. Once MRBT is operating, switch to only sending reduced, stabilized residuals to landfill.

12 Delegate Charkoudian and Senator Pinsky have introduced legislation (House Bill 280 and Senate Bill 304 in the 2021 legislative session) that would strip away these recycling credits from landfilling incinerator ash. These credits inflate the county’s recycling percentage by about 14%.

13 “Resolution to Extend Covanta Montgomery’s Service Agreement for the Resource Recovery Facility and Transfer Station,” March 20, 2012 memo from Senior Legislative Analyst, Keith Levchenko, to Montgomery County Council’s Transportation, Infrastructure, Energy & Environment Committee. www.energyjustice.net/files/md/montgomery/changeorder.pdf Page 1 states: “the County’s Solid Waste Management Plan requires Council approval for material changes to the waste disposal and service agreements. The Council must approve or disapprove the proposed change within 30 days or two regular Council worksessions (whichever is longer), unless the Council approves a resolution extending the time allowed for Council action. If the Council takes no action during this time, the proposed change is automatically approved.”

14 “Montgomery County Comprehensive Solid Waste Management Plan for the Years 2012 through 2023.” www.montgomerycountymd.gov/SWS/programs/solid-waste-plan.html Chapter 5, Section 5.2.1.2.C. (page 5-17; PDF p.181) states: “C. Changes to the Waste Disposal and Service Agreements – The County must not approve, or allow to take effect, under either the Waste Disposal or Service Agreement, any material change in the capacity or operation, or any material reduction in performance or environmental standards, of the facility or the transportation system unless the Director of DEP has submitted the change to the County Council. The County Council must approve or disapprove the proposed change within 30 days or two regular County Council work sessions, whichever is longer. If the County Council does not act within this time frame, the change will stand approved, unless the County Council approves a resolution extending the time allowed for Council action.” [The word ‘facility’ refers to the incinerator.]

15 Note that in our interviews with landfill managers and hauling companies that can serve the county, we learned that, if offered long-term contracts, even with no minimum “put or pay” clause, landfills could offer prices cheaper than the county pays for incineration, even when factoring in higher transportation costs. Issuing an RFP will reveal these prices, which will be lower than any spot market tipping fee data the county may be looking at. If choosing a landfill with rail access, like Maplewood in VA, the county might want to issue a request for quote (RFQ) or request for information (RFI) to assess cost and to understand how long it would take to build a rail transfer station. A private hauler may find it worthwhile to finance the building of any needed truck or rail transfer station. Use this information to evaluate whether rail or truck makes more sense for the county, long-term. If the rail transfer station is viable in terms of timing and cost, issue an RFP for a rail transfer station and switch from truck to rail once the rail transfer station is ready.
G. Report Overview

In Chapter 1, we discuss how Zero Waste strategies can do more than DEP and HDR Consulting assume.

In Chapter 2, we outline how the county can exit current incineration contracts without penalty, and show how polluting the incinerator is, debunking arguments made to justify incinerator pollution.

In Chapter 3, we break down the differences in greenhouse gas accounting and show the raw emissions, and how other estimates are manipulated.

In Chapter 4, we discuss the life cycle analysis we conducted for this report, examining Montgomery County’s incineration vs. landfiling options. We found that incineration is far costlier to human health and the environment than using truck or rail transport to any landfill analyzed, even the most distant.

In Chapter 5, we discuss the environmental racism issues around our waste management system, and examine how the county can improve on its environmental justice analysis.

In Chapter 6, we review the implications of developing the county’s Site 2 Landfill in Dickerson, and conclude that it would be financially, politically, and environmentally costlier, and would take more time than is necessary to switch to a more responsible waste management system.

In Chapter 7, we evaluate over 40 landfills the county could use, and propose a methodology of exclusion and inclusion criteria to select the most responsible landfills to use. The choice of landfills in some of the examples in earlier chapters is based on our review in this Chapter.

In Chapter 8, we look at the costs involved in continuing incineration or using different landfill options.

In Chapter 9, we propose specific next steps the county can start to take immediately.

In Chapter 10, we outline data we would like to obtain to facilitate a more transparent public dialogue.
Chapter 1: Zero Waste Strategies Have More Potential than DEP & HDR Portray

A. What is Zero Waste?

This report will focus on how the county can make the most responsible and informed decisions on managing waste that is not reduced, reused, recycled, or composted. Any sound management system for discarded materials, however, should start by following the Zero Waste Hierarchy, viewing discarded materials for the value they have, and avoiding generation of waste. The Zero Waste Hierarchy also has important lessons for the back end of the system: material recovery and biological stabilization prior to landfilling.

The internationally peer-reviewed definition of Zero Waste, and the Zero Waste Hierarchy, are established by the Zero Waste International Alliance as follows:

Zero Waste: The conservation of all resources by means of responsible production, consumption, reuse, and recovery of products, packaging, and materials without burning and with no discharges to land, water, or air that threaten the environment or human health.

To break it down a little further, Zero Waste strategies include:

Rethink/Redesign

Reduce

Source Separate reusables, recyclables, compostables, and trash

- **Reuse / Repair**
 (Reusables are just 5% of the discard stream, but comprise 50% of the economic value)\(^{18}\)

- **Compost ➔ Aerobically compost clean organic materials (food scraps, yard waste) to return to soils**

- **Waste:**
 - Waste Composition Research (examine trash to see how the system can be improved upstream)
 - Material Recovery (mechanically remove additional recyclables that people failed to separate; could be combined with the MRF, as a separate “dirty MRF” stream)\(^{19}\)
 - Biological Treatment (aerobic composting of organic residuals to stabilize them; or, better yet, anaerobic digestion followed by aerobic composting)
 - Stabilized Landfilling (biological treatment reduces volume and avoids gas and odor problems)

More detailed versions of what these steps entail can be found at www.energyjustice.net/zerowaste/hierarchy and www.zwia.org/zwh/

B. Unit-Based Pricing / Save as You Throw

Zero Waste strategies are capable of achieving deep reductions in waste generation. Unit-based pricing (a.k.a. “Pay as You Throw” or “Save as You Throw” – PAYT or SAYT) has proven to be the single most effective and cost-effective way to rapidly reduce waste.\(^{20}\) When we pay for utilities like electricity, water, or gas, we pay based on our usage. However, with trash, your neighbor could put out ten bags a week and you can put out one, yet you both pay the same amount, and there’s no incentive to reduce waste. Setting rates on a per-bag or per-container basis results in real waste reductions and cost savings for residents.

Over 10,000 communities use this system. Connecticut officials recently announced a serious push for SAYT as the state prepares for the closure of its second largest waste incinerator.\(^{21}\) **SAYT has the capability to almost immediately reduce waste generation by an average of 44%, with about half of the savings coming from behavior changes resulting in source reduction and reuse** (higher on the Zero Waste Hierarchy), representing material that does not even have to be removed from the curb to be composted or recycled. When combining SAYT with curbside composting collection, the average waste reduction reaches 70%.\(^{22}\)

\(^{18}\) Presentation by Dan Knapp & Mary Lou Van Deventer, founders of Urban Ore, June 11, 2014. www.urbanore.com

\(^{19}\) To accommodate an ever-shrinking waste stream as Zero Waste programs succeed over time, a modular material recovery facility (MRF) could have some lines that process source separated recyclables, and other “dirty MRF” lines that process trash to recovery additional recyclables. As source separation increases, the dirty MRF lines can be repurposed to sort source separated recyclables.

\(^{22}\) Interview with Kristen Brown, Waste Zero. www.wastezero.com
Two experts in unit-based pricing briefed the county’s Zero Waste Task Force in February 2019. Additional presentations by experts on the topic are available via the state of Connecticut.

Figure 1-3: Waste Zero examples of waste reduction impacts of unit-based pricing

The Sanford, Maine example is particularly powerful. The town adopted SAYT and saw the typical drop of waste generation by nearly half. One resident, who didn’t like it and who had just won the lottery, campaigned to repeal it. The town did, and waste generation jumped back up. A few years later, when he moved out of town and the town decided to restart the program, waste generation dropped again.

To boost participation in composting, various cities in the United States and Canada have switched to picking up trash every other week, while collecting recycling and composting weekly. People quickly learn that the “smelly stuff” doesn’t belong in the trash bin, but in the composting bin.

25 Unit-Based Pricing (UBP) Working Group, Connecticut Coalition for Sustainable Materials Management. portal.ct.gov/DEEP/Waste-Management-and-Disposal/CCSMM/Unit-Based-Pricing Videos of their presentations are available via docs.google.com/spreadsheets/d/11_ITv80EVviiOJJNJh3BpGdyCAJyC63GNi2L67x3N9k/
This can all be accomplished in a much shorter time frame than Montgomery County’s Department of Environmental Protection (DEP) seems to believe. The following pie charts from DEP indicate the expected impact of recycling after six years of waste reduction efforts, cutting municipal solid waste (MSW) by a mere 8% and failing to reach more than a 50% diversion rate.27

Figure 1-4: Montgomery County DEP 2017 & 2026 waste disposition

In this slide from an April 2020 DEP presentation, Pay as You Throw (“PAYT”) is listed as only having the potential to divert about 16,000 tons/year when the county produces about 500,000 tons of MSW per year.28 This falls quite short of the potential that was presented to the county’s Zero Waste Task Force.

Figure 1-5: DEP Summary of Impacts of Waste Reduction and Recycling Options

27 Willie Wainer & Marilu Enciso, Montgomery County Department of Environmental Protection, “graphs” spreadsheet in Excel workbook generated July 15, 2020 through September 25, 2020 titled “RRMM Short and Middle Term PrioritiesV15.xlsx”

With a county-wide MSW generation rate of 500,000 tons/year, PAYT/SAYT should be cutting waste generation by upwards of 200,000 tons/year if implemented properly. DEP’s 16,000 tons per year (tpy) estimate even falls short of the unambitious estimate of their consultants. HDR’s April 2019 memo to the county lists PAYT as having the “[p]otential to divert an estimated 17,000 - 30,000 tpy.”

DEP has many good pieces of a Zero Waste program in mind, though there are critical areas that are missing and others that could be more ambitious. Some of the main building blocks of a strong Zero Waste program are unit-based pricing (paying per bag/bin), curbside composting collection, and strong education and enforcement programs. Construction and demolition waste (C&D) is a large part of the county’s waste stream and can be tackled best through the county’s implementation of the International Green Construction Code as well as with a deconstruction mandate, as Baltimore City’s new waste plan recommends. Encouraging more building material reuse would reduce the toxic harms associated with MCRRF’s incineration of large quantities of construction and demolition waste.

Aside from this chapter, the remainder of this report will focus on the back end of the Zero Waste Hierarchy — in other words, what is the best way for the County to manage the materials that still end up in trash cans.

C. Coordination with Climate Action Plan

In January, 2021, the County Executive released a draft Climate Action Plan (CAP) which aims to reduce greenhouse gas emissions 80% by 2027 and 100% by 2035. Unfortunately, the CAP has not been sufficiently integrated with waste management planning. The draft Climate Action Plan includes the goal that “no paper waste is sent to landfills and no plastic waste is incinerated,” capturing “100% of paper and plastic waste” by 2027. These are important concrete steps but more is possible. Plastic is unlikely to be eliminated from the waste stream by 2027, so the goal that by 2027 no plastic is incinerated implies that the County will terminate use of the Dickerson incinerator no later than 2027. The County should state clearly in the CAP that incineration will be terminated as soon as the County can enter into contracts to haul remaining trash to a landfill. Second, in addition to eliminating paper waste from landfill, the Solid Waste Emission Reduction Pathway should provide that no organic material (including paper, food scraps, and yard waste) will be sent to landfill without biological treatment, and should set an ambitious goal for source separation of these organics for recycling (paper) or aerobic composting (food scraps and yard waste).

33 A good resource is Build Reuse, formerly known as the Building Material Reuse Association. www.buildreuse.org
The Zero Waste section takes up a mere five paragraphs in the 130-page plan, and does not reference this goal or include any details on how this 100% paper and plastic diversion goal could be accomplished. DEP’s “Aiming for Zero Waste” materials do not acknowledge this goal of the proposed Climate Action Plan, or provide a path to accomplish such a goal.

Policies and planning between county agencies and initiatives need to be consistent and coordinated if ambitious goals are to be met. The Climate Action Plan and Zero Waste strategies in DEP’s solid waste planning should be better harmonized.

The Solid Waste Emission Reduction Pathway mentions the Zero Waste Task Force Planning and Initiatives and summarizes a few of its recommendations. The CAP, however, should refer expressly to the numerous waste reduction strategies identified in Figure 2-1 of the HDR’s Task 9 Report, incorporating these strategies as some of the strategies the County is currently implementing or considering for future implementation. The County is already making progress in developing ordinances to ban or regulate certain single-use disposable plastics and has identified other strategies to reduce wasteful consumption of plastics. Reducing demand for wasteful consumption, and changing public mindset from recycling to reducing the purchase of single-use disposable products and unnecessary products, will have a much greater impact on reducing CO2e emissions than recycling.

The draft Climate Action Plan mentions composting in a few places, but does not connect composting to the Zero Waste Task Force Planning and Initiatives section or identify specific goals for removing food scraps and yard waste from the municipal waste stream. Terminating incineration and ensuring that rapidly degradable organic material is not landfilled are the primary solutions to avoid greenhouse gas emissions in the county’s municipal waste system. As Chapters 3 & 4 describe in more detail, incinerators necessarily are a climate problem because any material they burn to produce energy must be carbon-based to provide that energy, whether from plastics, paper, or other organic material.

36 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ — Final Technical Memorandum #5,” Feb. 2020, pp.3-4, “Figure 2-1: Proposed Timeline for Implementation of Zero Waste Plan Options.” drive.google.com/file/d/1MqFlk7Yfrb0bbze20hJ9Nx-Gk0v40x/view
In landfills, the GHG threat is mainly from food scraps and yard waste, which degrade most readily. Source separating these organic materials for aerobic composting is ideal. To further avoid GHG production at landfills, any food scraps and yard waste that still end up in trash cans should be handled by processing these residuals with anaerobic digestion prior to landfilling. The county already has a “Strategic Plan to Advance Composting, Compost Use, and Food Scrap Diversion” that could be prioritized, referenced in the Climate Action Plan, and expanded to include the anaerobic digestion for biological stabilization of the organic fraction of trash residuals before landfills.

Regarding plastics, U.S. Environmental Protection Agency (EPA) research shows that burning them is the worst option, while eliminating or recycling them have major climate benefits. Plastics make up 16% of the county’s waste stream, but looking more closely at one plastic category – narrow-necked plastic containers, which are easily recyclable (consisting of PET, LDP, or HDPE plastic) – we see that less than 2% of multi-family and non-residential waste of this type is recycled.

Figure 1-8: GHG Impacts of Plastic Management Options

39 Montgomery County Department of Environmental Protection, Table 4.2, Waste Recycling by Material Type: Achievement and Opportunity, 2017. Not online but a 2012 version is in Table 4.1 in "Montgomery County Comprehensive Solid Waste Management Plan for the Years 2012 through 2023," p.4-9, www.montgomerycountymd.gov/SWS/Resources/Files/swp/chapter4.pdf (in 2017, the multi-family and non-residential recovery rates were 1.5% and 1.6% respectively, as compared to 1.2% and 2.6% in 2012).

The benefits of source reduction and recycling has been shown for other materials as well. The following chart shows the GHG benefits of a variety of materials as studied in Europe.41

Figure 1-9: Climate impacts of waste management options by material

Figure E- 2: Indicative Climate Change Impacts of Key Waste Management Activities (excl. CO₂ from biogenic sources)

Clearly, the benefits of waste reduction, recycling, and composting vastly outweigh the impacts of disposal by landfilling or incineration. This chart shows GHGs from landfilling to be greater than incineration, which is the opposite of what modeling for this report found to be true for Montgomery County. This difference is largely attributed to the European model ignoring at least half of the incinerator emissions by not counting biogenic carbon, and also to assuming fossil fuel energy is displaced by incineration, which is not the case in Maryland. This GHG modeling differences are discussed later in the biogenic carbon and fossil fuel displacement sections of the Greenhouse Gas part of this report.

Chapter 2: The Case Against Incineration

A. No Penalty for Exiting Incinerator Contracts Early

The County Can End its Incineration Contract at any Time

Montgomery County contracts with the Northeast Maryland Waste Disposal Authority (hereinafter “the Authority” or “NMWDA”) for Covanta’s operation of the Montgomery County Resource Recovery Facility trash incinerator (MCRRF), which the county now owns after many costly years of debt service.42

In November 2018, during the final days of County Executive Leggett’s administration, the county’s incinerator contract – set to expire April 1, 2021 – was extended for another five years through April 1, 2026. One year later, the county’s new DEP director, Adam Ortiz, expressed, “we can’t put anything out to bid at this time,” as if there were no way out of the incineration contract.43

However, the Authority’s contract with Covanta can be canceled by the county at any time with 180 days’ notice.44 Since 2016, there has been no financial penalty for exiting the contract early. This was affirmed by Chris Skaggs, Executive Director of the Authority, commenting in a February 26, 2019 *Bethesda Beat* article:

> “Skaggs said the contract allows the county to get out of the agreement at any time, provided that the county pays ‘wrap up costs,’ or the cost of demolishing the incinerator. There is no ‘termination for convenience’ fee, Skaggs said, which in some situations would be paid back to the contractor if the government exits early.”45

This understanding was expressed as early as 2012 by Senior Legislative Analyst for the County Council, Keith Levchenko:

> “Finally, the revised contract maintains the County’s right of termination for convenience at any time (with 180 days’ notice). The cost to terminate during FY12 is $4.0 million. This amount goes down by $1.0 million per year each of the next several years and will be zero as of the end of the current contract term (April 1, 2016). During any period after that, the County can terminate the contract at no charge.

The termination for convenience is a key provision that allows the County to pursue other potential cost savings opportunities in the future (such as bidding a new contract). Further, the County can exercise this provision at an ever-decreasing cost (zero cost after April 1, 2016).”46

42 While the incinerator’s debt service was still being paid (pre-2016), Moody’s Investors Service reported that the incinerator has a “high all-in cost of disposal” of around $104-110/ton – approximately three times higher than what Washington, DC pays Covanta for use of its incinerator in Fairfax County, VA. See www.moodys.com/research/Moodys-assigns-Aa3-rating-to-Northeast-Maryland-Waste-Disposal-Authorities--PR_265575 and www.moodys.com/research/Moodys-maintains-Aa3-on-Northeast-Maryland-MD-Waste-Disposal-Authorities--PR_318494

43 Email from Adam Ortiz to Lauren Greenberger, December 7, 2019.

The County can Stop Sending Incinerator Ash to Landfill at any Time

The Authority and waste corporation, BFI Waste Systems of Virginia (now Republic), entered into a contract for the dumping of incinerator ash in the Old Dominion Landfill near Richmond, Virginia. This contract expires June 30, 2024 or whenever the County Executive closes the incinerator.47 See more on this ash dumping in Black communities in Chapter 5.

Section 2.11 in the ash disposal contract states:

“Notwithstanding anything to the contrary, should the RRF be closed at the direction of the County Executive, then such closure shall be deemed a termination of convenience and the provisions of Section 7.3 [Termination for Convenience] shall apply.”

Picture 2-1: Old Dominion Landfill and nearby housing

B. The County’s Trash Incinerator is a Major Polluter

Trash incineration is the most expensive and polluting way to manage waste or to make energy.\(^\text{48}\) It is more polluting than burning coal, and is more harmful to health and the environment than directly using landfills.\(^\text{49}\) The MCRRF incinerator also burns an average of 88,000 tons of construction and demolition (C&D) waste annually, comprising 15% of the incinerator’s incoming waste stream. C&D waste is particularly toxic when burned due to painted and chemically-treated wood,\(^\text{50}\) asphalt shingles, and other materials that introduce toxicity concerns when incinerated.

A 2017 life cycle analysis comparing DC’s use of the Covanta Fairfax trash incinerator in Northern Virginia to four landfills in southeastern Virginia found that waste incineration closer to home is worse than trucking waste 2-5 times as far to reach landfills. The analysis found that incineration created more global warming pollution, and emissions of nitrogen oxides, particulate matter, acid gases, toxic chemicals, and chemicals that form smog.\(^\text{51}\) Trucking turned out to be insignificant compared to the emissions from landfilling or incineration, and a far longer hauling distance would still not justify incinerating closer to where trash is produced.

Acknowledging this research, the chair of Washington, DC City Council’s Committee on Transportation and the Environment, Mary Cheh, wrote a powerful letter to D.C.’s Department of Public Works and refused to move forward a three-year contract extension with Covanta for health and environmental justice reasons.\(^\text{52}\) In this October 2020 letter, Cheh insisted that the District’s Department of Public Works extend the contract for only one year in order to buy the time to conduct a study of alternatives that the agency promised in 2018 but never conducted.

The GenOn Dickerson coal power plant, located less than a mile away from the incinerator, closed in 2020, making the MCRRF trash incinerator the foremost industrial air polluter in Montgomery County, accounting for nearly half of our county’s industrial air pollution. It is our county’s largest single source of greenhouse gases, ammonia, arsenic, beryllium, cadmium, chromium (VI), hydrochloric acid, mercury, nitrogen oxides, particulate matter (PM10), fine particulate matter (PM2.5), and sulfur dioxide. It is second only to the Montgomery County Airpark in Gaithersburg in toxic lead emissions.\(^\text{53}\)

Some chemicals known to be released by incineraators have no safe dose, including dioxins,\(^\text{54}\) lead,\(^\text{55}\) mercury,\(^\text{56}\) and particulate matter.\(^\text{57}\)

\(^\text{49}\) Mike Ewall, “Landfills are bad, but incinerators (with ash landfilling) are worse,” Energy Justice Network factsheet. www.energyjustice.net/files/incineration/incineration_vs_landfills.pdf; see also www.energyjustice.net/incineration/worsethancoal
\(^\text{51}\) Energy Justice Network powerpoint on incineration. www.energyjustice.net/files/incineration/incineration.pdf - see slides 60-96 for the landfill vs. incinerator comparison data and analysis
\(^\text{52}\) Councilmember Cheh letter to Washington, DC’s Department of Public Works, October 19, 2020. www.energyjustice.net/files/dc/2020-10-19ChehLetterToDPW.pdf
\(^\text{54}\) “No evidence of dioxin cancer threshold,” Environmental Health Perspectives 2003 Jul; 111(9): 1145–1147. www.ncbi.nlm.nih.gov/pmc/articles/PMC1241565/
Covanta prefers to frame things in more favorable ways. In fact, its public relations efforts are a lesson in how to lie with statistics. Here are some ways it tries to frame its excessive pollution as nothing to worry about:

Covanta compares emissions of select pollutants from incineration to transportation and heating sector sources to make their emissions look relatively small

Since the incinerator produces a huge share of the county’s industrial air pollution, Covanta selects the few pollutants that are also generated by vehicles and building heating systems to make it appear that the incinerator’s contribution is less significant (see circle charts on right, from a Covanta factsheet).\(^58\)

Even so, Covanta’s presentation of these 2017 EPA data shows that the incinerator’s emissions of nitrogen oxides (which can trigger asthma attacks) equal half of the nitrogen oxides emitted from all of the county’s commercial heating systems combined (primarily oil and gas burners heating schools, businesses, government buildings, hospitals, and other institutions).

Covanta’s charts show that the incinerator releases 21% of sulfur dioxide emissions from ALL sources in the county, including the GenOn Dickerson power plant (43%) and all vehicles and heating systems. This 21% figure is misleadingly low when closure of the GenOn coal power plant is considered. Against a 2017 baseline (the latest EPA data), Covanta used its 2019 data in its August 2020 factsheet without comparably adjusting for the fact that the coal plant down the road from the incinerator operated less in 2019 and ceased operation in July 2020. In 2017, the coal power plant operated at 3% of its capacity, burning 78,729 tons of coal, none of which is being burned anymore.\(^59\) The incinerator’s contribution to sulfur dioxide pollution in Montgomery County is now around 35%, conservatively assuming non-pandemic transportation levels.

Aside from the significant emissions of air pollutants from the incinerator compared to other air pollution sources in the county, the overarching issue is how incineration (and landfilling incinerator ash in Virginia) compares to the main alternative for the waste that remains after waste reduction efforts: truck or rail transport to out-of-state landfills. A comprehensive life-cycle assessment of these impacts, using the MEBCalc model, comparing MCRRF to using any of ten landfills in Pennsylvania, Virginia, or Ohio via truck or rail shows that incineration is far worse than landfilling in any of these locations. See “Landfilling vs. Incineration” section below for details.

\(^{59}\) Energy Information Administration, Form 860 and Form 923 databases. www.eia.gov/electricity/data/eia860/ and www.eia.gov/electricity/data/eia923/
Sulfur dioxide aggravates asthma, causes wheezing, shortness of breath, chest tightness and other problems, especially during exercise or physical activity.60 Sulfur oxides can react with other compounds in the atmosphere to form small particle pollution which can penetrate deeply into the lungs. They also contribute to acid rain which can harm sensitive ecosystems and stain and damage stone and other materials, including culturally important objects such as statues, tombstones, and monuments.61

Compared to the pollutants described above that also come from mobile sources and heating systems, the incinerator’s share of the county’s hazardous air pollution is far higher, as mobile sources and heating systems do not emit significant amounts of dioxins, mercury, arsenic, cadmium, hydrochloric acid, and other toxic pollutants. Covanta does not show pie charts on these toxic emissions.

Let’s put this toxic pollution in perspective. In 2017, Covanta reported emitting 17.23 pounds of mercury into the county’s air. The incinerator is responsible for about 90% of the county’s industrial mercury emissions, and other sectors (like motor vehicles and heating systems) do not release mercury. Mercury is highly toxic. There is no known safe level of exposure.62 A highly-cited Minnesota study63 found that approximately one gram of mercury (the amount in a single fever thermometer) deposited annually on a 20-acre lake, over time can contaminate the fish at levels making them unsafe to eat. 17.23 pounds of mercury is 7,815 grams. That means that the county’s incinerator has been releasing mercury in amounts sufficient to render fish in approximately 7,800 20-acre lakes unsafe to eat.

\textit{Covanta compares incinerator emissions to larger industries without adjusting for size}

Covanta also compares its industry to much larger industries without adjusting for size. This chart (right), using 2005 data, is from a 2015 Covanta factsheet cited in a 2019 research paper by Montgomery County Council Summer Fellow, Katie Koon, mentored by Keith Levchenko.64

The pie chart minimizes the incinerator (“WTE”) industry’s mercury emissions by comparing incinerators to other electric generators (primarily coal power plants, most of which have closed down since the chart was made). In 2005, 99 trash incinerators were operating in the United States averaging 36 megawatts (MW) each, and 591 coal power plants averaging 562 MW each. In other words, coal plant capacity was 93 times as much as trash incinerators.

\begin{itemize}
\item 60 American Lung Association, “Sulfur Dioxide,” Feb. 12, 2020. \url{www.lung.org/clean-air/outdoors/what-makes-air-unhealthy/sulfur-dioxide}
\item 61 U.S. Environmental Protection Agency, “Sulfur Dioxide (SO₂) Pollution.” \url{www.epa.gov/so2-pollution/sulfur-dioxide-basics}
\item 63 “One Gram of Mercury Can Contaminate a Twenty Acre Lake: An Clarification of This Commonly Cited Statistic,” Summary Prepared by Interstate Mercury Education and Reduction Clearinghouse, 2004. \url{www.newmoa.org/prevention/mercury/mercurylake.pdf}
\end{itemize}

The report’s third reference to a Covanta source (on p.19) is no longer available on Covanta’s site, but can be found at \url{www.environmentalleader.com/wp-content/uploads/2018/12/Is-EFW-Worse-Than-Coal.pdf} or \url{web.archive.org/web/20170120143204/https://www.covanta.com/-/media/Covanta/Documents/Solutions/Is-EFW-Worse-Than-Coal.pdf}
U.S. EPA does this, too, in a pro-incineration page that the agency has archived and will not document or defend, making comparisons that simply represent that the incineration industry is small compared to power and transportation sectors.65

The real question is not “which industry is larger,” but “which type of fuel is dirtier?” Proper accounting shows that trash burning is dirtier than burning coal — even though trash incinerators are newer facilities and have more pollution control devices. National data, statewide data in Maryland and New York, and a comparison of the trash and coal burning facilities in Dickerson have all affirmed this. A proper accounting adjusts for size by measuring the pounds of pollution per megawatt-hour generated (lbs/MWh). Each of the following comparisons uses that measurement.

A national analysis of EPA data found that to generate the same amount of energy as a coal power plant, trash incinerators release 28 times as much dioxin, 2.5 times as much carbon dioxide (CO₂), three times as much nitrogen oxides (NOₓ), six times as much mercury, and 1.7 times as much sulfur dioxide.66

A comparison of the 2007-2009 emissions released from Montgomery County’s incinerator and four Maryland coal power plants (including the GenOn plant in Dickerson) found that the county’s incinerator released 2-4 times as much mercury per megawatt-hour, 3-8 times as much lead, 2-5 times as much NOₓ, 2.3 times as much carbon dioxide (CO₂), and 1.69 times as much carbon monoxide as these coal power plants released on average.67

Figure 2-3: Ratio of Trash Incineration vs. Coal Emission Rates using National and Maryland Data

The State of New York’s Department of Environmental Conservation (DEC) conducted a similar analysis in 2011, when successfully arguing that trash incinerators in New York do not deserve to be classified as renewable energy in the state’s Renewable Portfolio Standard. New York DEC compared the ten trash incinerators in the state to the eight much larger coal power plants that were still operating at the time. The agency found that there was more total mercury from the trash incinerators, but when adjusting for size, the incinerators released 14 times as much mercury per megawatt-hour as did the coal power plants. While coal plants emitted nearly five times as much sulfur dioxide as incinerators per unit of energy, incinerators emitted more pollution per megawatt-hour on every other pollutant measured.

Figure 2-4: New York Department of Environmental Conservation comparison of NY trash incinerators to NY coal power plants

<table>
<thead>
<tr>
<th></th>
<th>Carbon monoxide (tons)</th>
<th>Nitrogen oxides (tons)</th>
<th>Sulfur dioxide (tons)</th>
<th>Hydrochloric acid (tons)</th>
<th>Mercury (lbs)</th>
<th>Lead (lbs)</th>
<th>Cadmium (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash</td>
<td>5.13E-04</td>
<td>6.57E-03</td>
<td>9.08E-04</td>
<td>5.30E-04</td>
<td>8.10E-05</td>
<td>1.82E-04</td>
<td>1.21E-05</td>
</tr>
<tr>
<td>Coal</td>
<td>1.01E-04</td>
<td>9.74E-04</td>
<td>4.21E-03</td>
<td>1.34E-04</td>
<td>5.76E-06</td>
<td>1.32E-04</td>
<td>2.86E-06</td>
</tr>
<tr>
<td>Ratio</td>
<td>5.08</td>
<td>6.75</td>
<td>0.22</td>
<td>3.96</td>
<td>14.07</td>
<td>1.38</td>
<td>4.22</td>
</tr>
</tbody>
</table>

Note: any ratio greater than one means trash incineration is dirtier than coal power plants. This shows that trash incinerators in New York released four times as much hydrochloric acid per unit of energy as did coal power plants, nearly seven times as much nitrogen oxides, and 38% more lead.

Applying a similar comparison within Montgomery County finds similar results. Using the latest available data to compare the county’s incinerator to the nearby GenOn power plant shows that the incinerator generated 32% more electricity but 91% more global warming pollution than the power plant. Comparing apples-to-apples in an analysis similar to that conducted by the State of New York, in pounds of pollution per kilowatt-hour of electricity generated, the incinerator released more pollution to make the same amount of energy as did the GenOn power plant, even though only 60% of the power plant’s energy generation resulted from burning coal, with another 38% from gas, and 2% from oil. The MCRRF incinerator released 12 times as much lead, 20 times as much mercury and 54 times as much hydrochloric acid to produce the same amount of power as the power plant. Greenhouse gases were 40% greater. All told, the incinerator emissions in 2017 were dirtier than the power plant for 8 pollutants, less dirty on five others (but not extremely so), and were tied on fine particulate matter.69

Figure 2-5: Incineration vs. Coal Burning in Dickerson

© 2020, Sustainable Energy for All. All rights reserved. This document is intended to support the dissemination of information and does not constitute endorsement. For information on how to cite this material, please contact info@se4all.org.
Boasting industry-wide emission reductions that are mostly the result of facilities closing

Another common example of misinformation is present in the abovementioned 2019 research paper prepared by a Montgomery County Council Summer Fellow mentored by Senior Legislative Analyst, Keith Levchenko. The paper states:

A 2012 inventory of all dioxin emissions in the United States found that “emissions of the WTE industry have been reduced to 0.54% of all controlled sources and 0.09% of both controlled and non-controlled sources.” Dioxin emissions have been reduced 95% since 1987 from regulated sources, like WTE facilities. However, they have increased from unregulated sources, like landfill and forest fires.

This is cited from a paper by Nickolas Themelis, Director of the Earth Engineering Center at Columbia University in New York City, and long-time leader in the university’s industry-sponsored Waste-to-Energy Research and Technology Council (WtERT). WtERT are the “tobacco scientists” of the incineration industry, sponsored by Covanta and all of the other major industry players. WtERT publishes pro-incineration research that is then cited as academic authority by Covanta, the Covanta-funded Center for American Progress, the Covanta-funded Energy Recovery Council (the incinerator industry’s trade association), and, regrettably, this Montgomery County summer fellow.

Themelis’ data could lead the reader to conclude that the industry – once the largest source of dioxin pollution – has cleaned up its act. In fact, in the study’s time frame (1987 until 2012), the number of trash incinerators operating in the United States dropped from 144 to 85. Among those closed or rebuilt in that time frame were a handful of incinerators with particulate matter pollution controls configured in a way that massively boosted dioxin emissions. Indeed, just one of those incinerators had dioxin emissions five times higher than EPA estimated for the entire industry. While some of the pollution reductions came from federal regulations forcing the industry to upgrade pollution controls, much of it came from about half of the industry closing down. It was not the voluntarily act of a caring industry.

71 Nickolas J. Themelis C.V.
74 Themelis is cited in footnote 21 in Covanta White Paper #3 and footnotes 2 and 3 in Covanta White Paper #4.
75 Covanta is listed as a donor to Center for American Progress in every year where they list supporters, which dates back to 2013, the year of their publication of a pro-incinerator report. From 2014 to present, the amounts are listed and Covanta is always listed in the $50,000 to $99,999 funding bracket. See www.americanprogress.org/c3-our-supporters/ (find prior years listed at bottom).
77 See Covanta and the Northeast Maryland Waste Disposal Authority (of which Montgomery County is a member jurisdiction) listed among the members in the incinerator industry trade association, currently named Energy Recovery Council: www.energyrecoverycouncil.org/erc-members/
79 U.S. Environmental Protection Agency, “The Inventory of Sources of Dioxin in the United States,” April 1998 External Review Draft, Figure 2-2.
80 Electrostatic Precipitators Breed Dioxins, www.ejnet.org/dioxin/esp.html
Dioxins and furans are still produced at dangerously high levels in newer and older incinerators.

Dioxins and furans are the most toxic chemicals known to science. They are so toxic that EPA ranks the worst of them as 10,000 times more toxic than the second most toxic chemical, 28,000 times as toxic as PCBs, and 140,000 times as toxic as mercury. Dioxins travel very far and are fat-soluble, causing them to quickly bioaccumulate in the food chain. Ninety-three percent of people’s exposure to dioxins comes from eating meat and dairy, which is a great reason not to have a dioxin source located in the county’s Agricultural Reserve.

A similar comparison was made in a 2007 EPA memo looking at the impact of EPA regulations on large and small trash incinerators (“municipal waste combustors”). It compares emissions from the industry in 1990 to those in 2005. It finds a 24% reduction in NOx, an 88% reduction in SO2, and reductions of hydrochloric acid, particulate matter, lead, cadmium, mercury, and dioxins in the range of 94 to 99%.

However, it looks at industry totals, not the average amount of pollution per ton of waste burned, or per unit of energy produced, which are the relevant comparisons for policy decisions for a single county. The memo fails to mention that 86 trash incinerators in the U.S. closed between 1990 and 2005 – almost half of the industry. While the reductions seem impressive, they occurred largely because the most polluting incinerators closed down. This is saying a lot when the “cleaner” trash incinerators still operating today are dirtier than coal power plants.

This data from EPA’s 2007 memo are still cited in Covanta’s factsheets, in the Energy Recovery Council’s industry directory, and on EPA’s archived webpage promoting incineration.
Inadequate emissions testing may underestimate true emissions levels

Only four pollutants at the county's incinerator are measured on a continuous basis: carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and hydrochloric acid (HCl). While opacity (darkness of emissions) is also continuously monitored, it is not an adequate substitute for continuous monitoring of particulate matter (soot). Other parameters like oxygen and temperature are also continuously monitored, but are not pollutants, and are not appropriate proxies for other pollutants like dioxins, since multiple other variables contribute to dioxin formation.

Beyond these four pollutants, ten others are tested – once a year. All testing is done by Covanta or by engineers it hires. If we regulated motorists the way we do smokestacks, this reliance on annual stack testing would be like setting a speed limit and allowing drivers to drive all year with no speedometer. Once a year, on the highways, a speed trap would be set, with signs leading up to it saying “warning... slow down... speed trap ahead,” and the driver’s brother would run the speed trap (Covanta hires their own consultants to conduct their testing). In reality, smokestack facilities are “speeding” many other days of the year when testing is not done, especially during startup, shutdown and malfunction times, when emissions can increase substantially. A European study of dioxins tested with continuous samplers found that actual dioxin emissions are 30-50 times higher than what we think they are in the United States when we rely on a single six-hour annual test.90

Annual stack tests are required to be tested under ideal operating conditions, not during startups, shutdowns, or malfunctions, when emissions can be far higher. Because of the inadequacy of annual stack testing, some local governments have adopted stricter local clean air laws, such as the Baltimore Clean Air Act, which required that 20 pollutants be continuously monitored and that the data be shared on a public website in real-time.91

Test data may be manipulated

There’s the possibility that Covanta’s emissions data is not honest. Both annual stack tests and continuous emissions monitors have been rigged at trash incinerators, by Covanta and others, but are rarely caught.

In Connecticut, Covanta was fined $20,000 in a civil action filed by the state Attorney General in response to an employee adjusting a continuous emissions monitoring device to alter a reading in order to pass a continuous emissions monitoring audit.92 In Tulsa, Oklahoma, Covanta was the target of a criminal investigation by the U.S. Attorney’s Office “related to alleged improprieties in the recording and reporting of emissions data” in which Covanta entered into a non-prosecution agreement to follow applicable laws and regulations and pay a $200,000 “community service payment” to the state environmental agency.93

91 Clean Air Baltimore Coalition, “Baltimore Clean Air Act.” www.cleanairbmore.org/cleanairact A federal district court judge struck down the Baltimore Clean Air Act in March 2020, and the legal appeal was dropped when the outgoing city mayor cut a deal to extend the Wheelabrator Baltimore trash incinerator contract for a decade. The city had a strong case, which will now need to be relitigated to regain the rights of counties and municipalities in Maryland to have their own clean air laws, as federal and state law clearly permit. Find the court filings at www.cleanairbmore.org/cleanairact/lawsuit
92 See page 37 for this 1993 incident reported in this 93-page compilation of Covanta’s U.S. violations through September 2006: www.energyjustice.net/files/incineration/covanta/violations2006.pdf
93 Covanta Holding Corporation’s 2019 10-K Securities and Exchange Commission filing, p. 105. (see “Tulsa Matter” describing the consequences of this 2013 incident) d18nd0p25nwr6d.cloudfront.net/CIK-0000225648/992dfb7f-398d-4b17-8e33-75e9566f235.pdf
In 2019, a Covanta worker with experience at two Covanta trash incinerators revealed that Covanta rigged its annual stack tests. This worker explained that Covanta workers will store select garbage at one end of the pit and let it sit there for a month or two before testing. The whistleblower claimed that this practice occurred at “every Covanta and probably every WTE out there.” This worker explained that Covanta prefers cardboard and dry wastes: “cardboard is the best, they sprinkle it over the pit,” “dry waste, plastics are fine as long as it’s not all plastic at once; wood is good.” “Household garbage sucks (food products and all that). Commercial waste is best.”

Similarly, regarding the Columbus, Ohio incinerator (closed in 1994), a different whistleblower revealed that the operator held onto specific, dry trash in order to rig its stack test.

During stack tests, trash burned is legally required to be representative of what is normally burned. A state or county regulator could look at pit summaries daily, comparing those leading up to stack testing, and ask why the operator hasn’t burned waste from certain days yet, if anomalies are noted. Stack testing at the county’s incinerator is conducted over a span of about 10 days.

Weak and outdated permit limits make incineration appear healthy and safe

Covanta contends that since the MCRRF’s actual emissions are far below permit limits, continued operation of the incinerator constitutes “superior environmental performance” and caring about communities, implying that Covanta is protecting public health and safety.

Health studies of communities living near trash incinerators, contrary to Covanta’s spin on the science, have found elevated cancers and respiratory problems, among other deleterious health impacts.

Figure 2-7: Covanta chart showing how high emissions limits are compared to actual emissions

94 This whistleblower’s identity must remain anonymous for their own protection.
97 Covanta, “Covanta Montgomery.” www.covanta.com/where-we-are/our-facilities/montgomery
A closer look at the science, available technology, and permits for new facilities belies these contentions. Meeting permit limits does not equate with minimizing harm to public health, safety, or climate change, yet industry and governments often succumb to this fallacy. For example, Koon, in her research paper for Montgomery County Council, equated achieving emissions levels at or below permitted standards or levels achieved by other industries with evidence of protecting health, safety, and the environment.100 Similarly, Montgomery County DEP presents the same sort of data on the county’s website:101

This presentation of the data (without actual amounts of emissions presented) creates the impression that 1) permit limits are modern and protective, and 2) staying below permit limits means that emissions are not harmful to health and the environment.

100 Katy Koon, “An Evaluation of the Assumptions Underlying Environmental Assessments of Montgomery County’s Resource Recovery Facility,” Montgomery County Council Summer Fellows Program, 2019. \texttt{www.montgomerycountymd.gov/COUNCIL/Resources/Files/Summer_Fellows/2019/KatyKoon.pdf} Statements reflecting this thinking appear throughout this report to the County Council: "The facility operates under state permitting requirements, and it successfully maintains operations below these permitting requirements." (p.8); "Groups opposing WTE facilities argue that these emissions present dangerous health and environmental risks. However, the RRF operates under permitting requirements meant to mitigate these risks and protect human and environmental health. The RRF meets its permitting requirements..." (p.14); "Other pollutants emitted by the RRF have not been found to be threatening to human and environmental health in the quantities existing in incinerator emissions. Incinerators do emit particulate matter, carcinogens, and dioxins but at levels far below regulatory standards and at rates lower than other polluting sectors. ...Modern incinerators equipped with air pollution control technologies produce far less harmful pollution than early incinerators did. They are 'likely to have only a very small effect on health,' although there is acknowledged difficulty in precisely studying the effects of pollutants in ambient air. (p.15); "Main findings: ...Based on available data, it cannot be concluded that emissions from the RRF contain levels of dangerous pollutants that threaten human and environmental health. Levels of metals, dioxins and furans, and other pollutants are below regulatory standards." (p.18)

Permit limits for existing trash incinerators (permitted nearly 30 years ago) are quite different from permit limits for new incinerators proposed in the last decade. For example, nitrogen oxides (NOx) which trigger asthma attacks were allowed for many years to be emitted at the county’s incinerator at a rate of 180 parts per million (ppm), and at 205 ppm at most other incinerators since the 1980s.

Maryland Department of the Environment (MDE) planned to set a new limit of 105 ppm at the incinerator in 2020, but the 180 ppm limit is still listed on Montgomery County’s website and in Covanta’s stack testing report. The incinerator’s actual NOx emissions average around 88 ppm, a level that would be illegal at any new trash incinerator permitted in the past decade. These newer trash incinerators have been permitted to allow no more than 45 ppm, which can only be achieved with selective catalytic reduction (SCR) technology. This lower NOx requirement of 45 ppm was included in the following air permits:

- 2010: Solid Waste Authority of Palm Beach County’s 3,000 ton/day “Palm Beach Renewable Energy Facility #2” trash incinerator in West Palm Beach, Florida (built adjacent to an existing incinerator, and operating since 2015; now operated by Covanta).
- 2010: Energy Answers’ 4,000 ton/day trash, tire, shredded car, and wood waste incinerator proposed for Baltimore City, Maryland (permitted, but defeated in 2016).
- 2013: Delta Thermo Energy’s 167 ton/day trash and sewage sludge incinerator in Allentown, Pennsylvania (permitted, but defeated in 2014).
- 2014: Wheelabrator and the Northeast Maryland Waste Disposal Authority’s 1,500 ton/day trash, sewage sludge, and tire incinerator proposed for Frederick County, Maryland (permitted, but defeated in 2014).

105 “Final Air Permit, Palm Beach Renewable Energy Facility No. 2,” Florida Department of Environmental Protection, Dec. 23, 2010, p.11. (Not available online, but a newer copy of the air permit is online at www.cleanairbmore.org/lawsuit/042R.pdf with the 45 ppm standard listed on p.25.)
Selective catalytic reduction technology is expensive. A 2020 report for Wheelabrator determined the cost of installing SCR technology at its Baltimore plant to meet the 45 ppm NOx standard would be around $60-93 million. Wheelabrator has argued before both MDE and a federal court that the cost of complying with this modern standard, as required by the Baltimore Clean Air Act, would force it to close down. To save Wheelabrator money, Baltimore City recently agreed to allow it to match the new MCRRF limit of 105 ppm. Simply put, while possible to accomplish, no existing incinerator operator is prepared to invest the money it takes to meet modern emissions standards.

Yellow bars on the charts below are permit limits. Blue lines represent the most recently available data on actual emissions. The green bar is MCRRF’s new emissions limit. In the following charts, Covanta Palm Beach #2, Wheelabrator Frederick, and Energy Answers represent incinerators permitted since 2010, as described above (only Palm Beach was built). Wheelabrator Baltimore is an existing incinerator that, in 2024, will be held to some modern standards as required in their contract with Baltimore City.

Figure 2-9: Nitrogen oxide actual emissions and permit limits at select incinerators

110 Statement of Timothy Porter, Wheelabrator Director of Air Quality Programs, at Maryland Department of the Environment Air Quality Control Advisory Council meeting on January 17, 2017. Mr. Porter stated that their “back of the envelope” calculation is that the 45 ppm standard would cost about $70 million plus $11 million/year and that they’d likely close rather than bear the cost of such a modernization.
MCRRF’s mercury emissions are nearly five times that of the new incinerator in West Palm Beach, and are ten times those of the 30-year old Covanta Fairfax incinerator. While the 35-year old Baltimore incinerator has higher mercury emissions, its new contract requires it to meet a modern emissions limit more than three times lower than the permit limit in Montgomery County.

MCRRF’s cadmium emissions are almost 50% higher than those of the Fairfax facility and over five times that of the new incinerator in Florida. MCRRF’s permit limit is 3.5 times that of incinerators permitted in the last decade. Baltimore’s new contracted emissions limit is also more stringent than Montgomery County’s.

MCRRF’s lead emissions are nearly three times the emission rate of Covanta Fairfax, and 12 times worse than the new Florida incinerator. The outdated permit limit is sky high – more than five times the limit that MDE issued to the two new incinerators permitted in the last decade.
Figure 2-13: Hydrochloric Acid

MCRRF’s hydrochloric acid emissions are the worst of the incinerators evaluated for this report, more than twice the rate of the older Fairfax facility, and nearly five times that of the new Florida facility.

Figure 2-14: Dioxins / Furans

Dioxins and furans – the most toxic chemicals known to science – are being released from MCRRF at a rate four times higher than that of the new incinerator in Florida. Outdated emissions limits are more than twice the new standards and are twice the new limit set in contract by the City of Baltimore. MDE set the limit for the Authority’s proposed Wheelabrator Frederick incinerator at a level three times more protective than Montgomery County’s permit.
As shown above, standards for new facilities are stricter than those for existing facilities. Even when standards for existing incinerators (permitted in the 1980s and 1990s) are made more protective, they are still not as protective as the permits issued to build new incinerators in the past decade. Further, emissions limits for incinerators in Canada and Europe are even stricter than those in the United States.

Permitted emissions limits are not based on health and safety

Permitted emission limits set by state environmental agencies are not based on health and safety. Arguments equating compliance with permit limits with “no harm to health and the environment” are a fallacy. As some state environmental regulators have admitted, permit limits are technology-based standards, and do not ensure that there will be no harm to public health.\(^{112}\)

Many permit limits also factor in the cost to a facility, allowing companies to choose cheaper control technologies if more protective ones are deemed too expensive.\(^{113}\)

Bigger polluters are allowed to be more polluting. Since permit limits are concentration-based (amount of pollutant in the overall amount of exhaust), larger facilities get to pollute more. For example, an 1,800 ton/day trash incinerator like MCRRF is allowed to emit three times more pollution as would a 600 ton/day trash incinerator just because it’s three times larger.

If permit limits were established to protect community health and safety, there would be a limit on the total pollution a community could be subjected to without causing “unacceptable” levels of harm. However, cumulative impacts of multiple facilities in one area are not considered in permitting, nor are synergistic effects of exposures to multiple pollutants. In some cases, chemicals can interact in such a way that \(2 + 2 = 7\), causing greater health impacts than the sum of the harms from separate exposures. Dickerson has been Montgomery County’s dumping ground for decades, hosting a coal-, oil-, and gas-fired power plant, a coal ash dump, the county’s trash incinerator, a nuclear isotope-manufacturer with thousands of violations and off-site radioactive contamination problems that got the site listed as a Superfund site, a quarry, an NIH facility that tests deadly viruses on animals, and the possibility of a new landfill. See [Chapter 5](#) for a more complete list of noxious facilities concentrated in Dickerson.

\(^{112}\) 8/28/2007 Pennsylvania Department of Environmental Protection public hearing on BioNol’s proposed natural gas-powered ethanol biorefinery in Clearfield, Pennsylvania. youtu.be/HQyJYjQ4wI. When questioned about why residents were told that the proposed air pollution permit means that the facility would be healthy and safe for the community, while permit limits were six times different at a same-sized second ethanol biorefinery proposed eight miles away in Curwensville (but powered by waste coal, not natural gas). DEP’s engineer stated: “The quick answer is that our evaluation is based on technology standards, not health standards... The underlying concept around the country is technology based. What is says essentially is that as older plants and older sources fall apart and become useless and are replaced, they need to be replaced with things that are cleaner. ...We don’t make evaluations of permits based on health standards in a direct fashion. ...For some of the large, very large permits like that one [a waste coal burning power plant], there are direct analysis of health issues. In this case, there is none. Typically, for smaller cases like this one, there isn’t any. ...Are we looking at the cumulative impacts [of multiple large pollution sources] ... the answer is ‘no.’”

\(^{113}\) The federal Clean Air Act has several standards that apply, nearly all of which allow for cost considerations. Sections 108-109 set National Ambient Air Quality Standards (NAAQS) for which states must adopt State Implementation Plans to reduce certain pollutants. In areas considered to be in attainment with NAAQS for criterial air pollutants (nitrogen oxides, sulfur dioxide, carbon monoxide, particulate matter, ozone precursors such as volatile organic compounds, and lead), a facility must meet Reasonably Available Control Technology (RACT) standards, where economic feasibility is a factor, and more expensive technology can be ruled out. This is the standard that was recently applied when MDE set the new limit for nitrogen oxide emissions that required no further action by Covanta. In “non-attainment” (unacceptably polluted) areas, the Lowest Achievable Emissions Rate (LAER) standard is applied for that specific pollutant. LAER does not consider cost, but allows for a facility to buy offsets (a right to pollute) from polluters in other areas that have closed or reduced their pollution. Section 111 of the Clean Air Act sets New Source Performance Standards for nine pollutants: particulate matter, carbon monoxide, dioxins/furans, sulfur dioxide, nitrogen oxides, hydrogen chloride, lead, mercury, and cadmium. For these, EPA must look at what is maximally achievable to reduce emissions rates, but must also assess the financial implications and must avoid a mandate that would cause “serious economic disruption in the industry.” Section 112 of the Clean Air Act sets National Emissions Standards for Hazardous Air Pollutants (NESHAPS), for which cost is not to be considered.
Existing trash incinerators like MCRRF can reduce air pollution with more stringent controls

The cost of reducing air pollution is passed along to the county. While the incinerator is, by far, the largest source of toxic mercury pollution in the county, as discussed above, this is after charging the county nearly $2 million a year to control mercury emissions, moving much of the mercury from the air to the ash. As shown in Figure 2-10, the Covanta Fairfax incinerator releases 10 times less mercury per unit of energy. MCRRF’s mercury emissions could be further reduced, but at considerable cost.

Other costs of basic pollution controls are passed on to the county as well. Montgomery County pays Covanta a premium to reduce MCRRF’s emissions of nitrogen oxides (NOx). Covanta “voluntarily” installed its proprietary “Low-NOx” technology at the MCRRF in 2009, cutting its NOx emissions in half from around 170 ppm to an average of 87 ppm. This improved NOx control system was installed from 2008 to 2010. Capital costs were $6.7 million. Annual operating costs have averaged $543,000 per year from 2010 through 2020. Keith Levchenko reported to County Council that in 2012 that a revised contract was to “reduce these annual costs by an estimated $350,000,” but that has not occurred.

An existing incinerator can cut NOx emissions in half again, to the 45 ppm limit, using modern selective catalytic reduction (SCR) technology, instead of the typical selective non-catalytic reduction (SNCR) used at MCRRF and most (1980s/90s-era) incinerators. SCR is needed to get to the modern 45 ppm standard. The only incinerator using SCR in the U.S. is the new facility in West Palm Beach, Florida, now operated by Covanta. Both SNCR and SCR involve spraying ammonia or urea into the exhaust stream to react with nitrogen oxides. Covanta’s “Low-NOx” system basically just does a better job of spraying the right amount at the right time and place. The main difference between SNCR and SCR is the addition of a bank of vanadium pentoxide catalyst that further reduces NOx emissions. To install SCR at an existing trash incinerator requires rebuilding the pollution control systems to make space for this catalyst system. This is considered prohibitively expensive and was estimated to cost $60-93 million for the Wheelabrator Baltimore trash incinerator to install.

For $40 million, Baltimore is cutting NOx emissions to the level of MCRRF, and will be far exceeding Montgomery County’s standards for cadmium, lead, mercury, sulfur dioxide, and dioxins, matching the strongest limits in North America for the latter three. This can be done with existing pollution control devices simply by spraying more of the chemicals used to react with the exhaust.

Wheelabrator Baltimore’s NOx emissions limit was recently lowered by the state from 205 ppm to 145 ppm. To meet the new limit, Wheelabrator introduced a system similar to Covanta’s “Low-NOx” technology to spray urea more effectively. Wheelabrator Baltimore now simply turns a dial to reduce emissions just enough to stay under a limit. The incinerator reduced its average NOx emissions from 166 ppm to 143 ppm to stay just under the 145 ppm limit. As of November 2020, Wheelabrator’s new

115 Maryland Department of the Environment, “NOx RACT for Municipal Waste Combustors (MWCs), Stakeholder Meeting,” January 17, 2017, p.20. mde.state.md.us/programs/regulations/air/Documents/SHMeetings/MunicipalWasteCombustors/MWCNOxRACTPresentation.pdf
116 Montgomery County Department of Environmental Protection, “Covanta Waste Management-Monthly Invoice Summaries FY09 through FY20.xlsx”
117 “Resolution to Extend Covanta Montgomery’s Service Agreement for the Resource Recovery Facility and Transfer Station,” March 20, 2012 memo from Senior Legislative Analyst, Keith Levchenko, to Montgomery County Council’s Transportation, Infrastructure, Energy & Environment Committee, p.3. www.energyjustice.net/files/md/montgomery/changeorder.pdf The letter states: “A reduction in the fee for the NOx equipment added to the RRF several years ago. This equipment reduces NOx emissions by approximately 50 percent. The County paid about $600,000 for the operation of this equipment in FY11. The revised contract will reduce these annual costs by an estimated $350,000.”
waste contract with the city requires it to match MCRRF’s limit of 105 ppm, for which it will just turn the dial back to stay just under that newer limit.

It’s the same situation with controlling sulfur dioxide (SO₂), lead, and cadmium. Scrubbers that inject a lime slurry to reduce SO₂ and heavy metals can inject more lime slurry to reduce emissions further.

The same goes for controlling highly toxic dioxins and mercury. An activated carbon injection system sprays activated carbon (like Brita filter material) into the exhaust to capture these toxic pollutants and transfer them to the ash. Incinerators can inject more activated carbon to reduce these emissions.

Incinerator operators can further reduce their emissions if they were willing. These examples show that some air pollutants can be reduced without installing new pollution control systems, but simply by using their existing ones more, spraying more of the relevant reagents into the exhaust gases.

As the recent Wheelabrator Baltimore contract shows, an old incinerator near the end of its life can meet some modern emissions limits for a known price. The Baltimore Clean Air Act would have required Wheelabrator to meet the modern standards for nitrogen oxides, dioxins/furans, sulfur dioxides, and mercury, and would have required real-time monitoring and disclosure of 20 pollutants. This was estimated to cost $95 million. However, the City of Baltimore and Wheelabrator agreed to a weaker standard for NOx (105 ppm instead of 45 ppm, to avoid costly SCR installation), and stack monitoring just three times a year (up from once a year, but far short of real-time). They also agreed to new (but not so modern) standards for lead and cadmium. This agreement will cost Wheelabrator $40 million.

These high costs are ultimately passed on to the public, but the cost of failing to meet these standards are also passed on to the public in the form of public health and climate change costs over time. Fine particulate matter is associated with premature death, heart disease, chronic bronchitis, and other respiratory distress. A 2017 study from the New York University School of Medicine found that just one pollutant (fine particulate matter, or “PM2.5”) from the Wheelabrator Baltimore trash incinerator is causing an estimated $55 million in annual health costs to residents across several states, mostly from cutting people’s lives short. On top of this, in April 2020, Harvard scientists revealed that a small increase of just one microgram per cubic meter of PM2.5 in the air is associated with a 15% increase in the COVID-19 death rate. In Maryland, Black residents suffer the most from COVID-19, with the highest death rates. While the Wheelabrator Baltimore incinerator is 25% larger than MCRRF, the particulate matter emissions at the two incinerators are almost identical. Accordingly, the estimated $55 million in annual harm to health (from this one pollutant alone) would be comparable for MCRRF.

123 Wheelabrator Baltimore burns up to 2,250 tons/day, while MCRRF burns up to 1,800 tons/day. However, according to the EPA’s National Emissions Inventory for 2017, MCRRF released 58,792 pounds of particulate matter (PM10) and 53,393 pounds of fine particulate matter (PM2.5) while Wheelabrator Baltimore released 57,999 pounds of PM10 and 54,521 pounds of PM2.5. www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
Chapter 3: Greenhouse Gases & Creative Accounting

The global warming pollution from the incinerator is 50 times more than the County DEP claims. The incinerator’s emissions as reported by DEP charts are wildly different from those reported in the County’s own draft Climate Action Plan (CAP) and, in turn, also differ from EPA data. Some of these numbers are “adjusted” by assumptions (described on the following pages) that discount and subtract actual emissions from the incinerator.

All of the data in the two charts below are for global warming pollution coming out of the county’s incinerator in 2018, and should all be the same number, measured in metric tons of carbon dioxide equivalents (MTCO₂e):

Figure 3-1: MCRRF 2018 GHG Emissions

<table>
<thead>
<tr>
<th>2018 MTCO₂e</th>
<th>“Adjusted”</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoCo DEP Waste Analysis¹²⁴</td>
<td>12,600</td>
<td></td>
</tr>
<tr>
<td>MoCo Climate Action Plan¹²⁵</td>
<td>209,558</td>
<td></td>
</tr>
<tr>
<td>EPA FLIGHT¹²⁶</td>
<td>218,249</td>
<td>580,469</td>
</tr>
<tr>
<td>EPA eGRID¹²⁷</td>
<td>311,500</td>
<td>631,235</td>
</tr>
</tbody>
</table>

These should all be the same amount, showing how much climate pollution came from the county’s incinerator in 2018. Why are EPA and the county’s numbers so different from their own and from one another?

DEP claims it derived these numbers using EPA’s WARM model, but did not provide the underlying spreadsheets to permit further analysis. DEP presented the County Executive with the following estimates of greenhouse gases under three options:

¹²⁴ Willie Wainer & Marilu Enciso, Montgomery County Department of Environmental Protection, “What’s Left” spreadsheet in Excel workbook generated July 15, 2020 through September 25, 2020 titled “RRMM Short and Middle Term PrioritiesV15.xlsx”

¹²⁷ U.S. Environmental Protection Agency, Emissions & Generation Resource Integrated Database (eGRID), www.epa.gov/egrid
Rather than just 12,600 metric tons of CO₂ equivalent, we calculate that the incinerator released 631,235 tons of CO₂ equivalent in 2018, which is 50 times as much as the DEP shows in its spreadsheet. Here is how we arrive at the number:

1) We use the latest (2018) unadjusted data for MCRRF’s emissions from EPA’s eGRID database.\(^{129}\) See the data for the plant named “Montgomery County Resource Recovery” with utility name “Covanta Montgomery, Inc.” from the PLNT18 datasheet. The fields named UNCO₂, UNCH₄, and UNN₂O represent the unadjusted numbers for the greenhouse gases carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O).

2) Since methane and nitrous oxide are in pounds and CO₂ is in tons, we divide the figures for methane and nitrous oxide by 2,000 to measure all three greenhouse gases in tons.

3) Since methane and nitrous oxide have global warming potentials much higher than CO₂, we use the short-term (20-year) global warming potentials of 86 for methane and 268 for nitrous oxide, multiplying by them to convert them to CO₂ equivalents (CO₂e) that we can add up. These represent the latest science from the International Panel on Climate Change.\(^{130}\) 20-year and 100-year numbers are available and, although though using the 100-year numbers would make the case against incineration even more powerful, we have chosen to use the short-term numbers because we recognize that we don’t have 100 years to tackle climate change. It is more appropriate to look at the short-term effects. Methane and nitrous oxide emissions amount to about 4% of the incinerator’s CO₂ equivalents with CO₂ emissions contributing the balance. Even if we use the 100-year numbers and do not factor in climate-carbon feedback loops, our calculation of the incinerator’s GHG emissions would be only 2% lower, at 618,807 tons of CO₂e.

\(^{128}\) Willie Wainer & Marilu Enciso, Montgomery County Department of Environmental Protection, “What’s Left” spreadsheet in Excel workbook generated July 15, 2020 through September 25, 2020 titled “RRMM Short and Middle Term PrioritiesV15.xlsx”

\(^{129}\) U.S. Environmental Protection Agency, Emissions & Generation Resource Integrated Database (eGRID), www.epa.gov/egrid; direct link to data: www.epa.gov/sites/production/files/2020-03/egrid2018_data_v2.xlsx

IPCC’s global warming potentials:

Figure 3-3: International Panel on Climate Change Global Warming Potentials

<table>
<thead>
<tr>
<th>Non-CO₂ Global Warming Potential (GWP)</th>
<th>EPA eGRID 2018 Data</th>
<th>Converted to Tons</th>
<th>20-year Global Warming Potential (GWP₂₀)</th>
<th>Carbon Dioxide equivalents (CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ (methane)</td>
<td>12.3</td>
<td>86</td>
<td>28</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td>57</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>13.4</td>
<td>371</td>
<td>1300</td>
<td>3050</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>379</td>
<td>1550</td>
<td>3170</td>
</tr>
<tr>
<td>CFC-11</td>
<td>45.0</td>
<td>6900</td>
<td>4660</td>
<td>6890</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>7020</td>
<td>5350</td>
<td>7080</td>
</tr>
<tr>
<td>N₂O (nitrous oxide)</td>
<td>121.0</td>
<td>264</td>
<td>265</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>121.0</td>
<td>266</td>
<td>298</td>
<td>284</td>
</tr>
<tr>
<td>CF₃</td>
<td>50,000.0</td>
<td>4950</td>
<td>7350</td>
<td>5400</td>
</tr>
</tbody>
</table>

Notes:
- Uncertainties related to the climate–carbon feedback are large, comparable in magnitude to the strength of the feedback for a single gas.
- Perturbation lifetime is used in the calculation of metrics.
- These values do not include CO₂ from methane oxidation. Values for fossil methane are higher by 1 and 2 for the 20 and 100 year metrics, respectively (Table 8.A.1).

Our calculations:

Table 3-2: MCRRF’s Actual GHG Emissions (20-year)

<table>
<thead>
<tr>
<th>Global Warming Pollutant</th>
<th>EPA eGRID 2018 data</th>
<th>Converted to Tons</th>
<th>20-year Global warming potential (GWP₂₀)</th>
<th>Carbon Dioxide equivalents (CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>605,445 tons</td>
<td>605,445</td>
<td>1</td>
<td>605,445</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>425,661 lbs</td>
<td>213</td>
<td>86</td>
<td>18,303</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>55,865 lbs</td>
<td>28</td>
<td>268</td>
<td>7,486</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>631,235</td>
</tr>
</tbody>
</table>

When comparing trash incinerators to...

1. **Electricity generation sources**, it is normal practice to convert tons of CO₂e emissions per unit of energy (megawatt-hours) generated. This apples-to-apples comparison shows that incinerators are 2.5 times as bad for the climate as coal power plants. The 2019 analysis for County Council affirms that “[w]hen accounting for all GHG emissions per MWh coming out of a WTE [incinerator] facility’s stack, the amount of emissions is higher than a coal plant.”

2. **Landfills or zero waste systems**, it is normal practice to compare CO₂e emissions per ton of waste processed. Using this method, we see that the county’s incinerator is 66 to 160% more polluting than landfills, depending largely on transportation mode and distance, if the landfill has a typical landfill gas capture rate of 75%. Without any methane capture from a landfill, a landfill would be worse for the climate (but still much better on human health indicators) than the incinerator. All landfill options under consideration have landfill gas collection systems.

131 EPA eGRID 2010 CO₂, SO₂ and NOx Emissions Data for U.S. Electric Power Plants, Energy Justice Network. www.energyjustice.net/egrid
Comparing the incinerator’s life cycle emissions as calculated by the county DEP staff to those generated by Ph.D. economist, Jeff Morris, who publishes in peer-reviewed journals based on the most comprehensive life cycle analysis software (MEBCalc), reveals a 4,400% difference, i.e., the estimate under the MEBCalc model is 44 times greater than the county’s estimate. Without seeing DEP’s calculations and assumptions, it is impossible to know exactly how DEP staff arrived at such a low number. However, as the Koon research paper for Montgomery County Council points out, there are major differences in the assumptions between the two models, and different assumptions can flip the result when comparing landfills and incinerators.133 Even when accounting for all of the possible assumptions, the different results are difficult to explain without a clear delineation of the county’s application of the WARM model.

Figure 3-4: DEP GHG analysis with WARM model vs. MEBCalc model GHG analysis

A. Analysis of WARM and MEBCalc Models and Underlying Assumptions

Let’s examine the WARM and MEBCalc models and their assumptions. Some of these assumptions can have a decisive impact on the calculated outputs of climate-relevant emissions.

The various assumptions that can affect results are:

- Biogenic carbon – to count or not to count?
- Displacement of fossil fueled electric generation
- Displacement of landfill emissions
- Landfill gas capture rate
- Assuming conventional landfilling is the only alternative
- Methane’s global warming potential
- Transportation emissions

B. Biogenic carbon – to count or not to count?

The assumption that “biogenic” carbon does not count impacts the calculation of GHG emissions most significantly since it effectively ignores as much as two-thirds of the emissions from incineration. This assumption of “biomass carbon neutrality” (ignoring biogenic carbon) has been debunked by climate scientists, with much of the science challenging this assumption first coming out in 2010.134

The theory is that “biogenic” carbon emissions – those originating from burning “biomass” (plant-based material such as food scraps, yard waste, paper products, real leather, and other animal-based products) – do not count because these carbon emissions do not represent “new” carbon in the biosphere and because growing plants will eventually draw down the CO\textsubscript{2} in a closed loop. This stands in contrast to fossil fuels (coal, oil, or gas), where “new” carbon is introduced to the biosphere after having been dug up or drilled from underground.

Scientists challenging the carbon neutrality argument have shown it is based on a fundamental accounting error. Climate models already account for carbon drawdown by growing trees and plants. It is double counting to zero out the “biogenic” carbon emissions from burning trash or trees based on the idea that trees and plants are growing to compensate for these emissions.135 To properly account for incinerator CO\textsubscript{2}, all biogenic emissions must be counted. These “biogenic” emissions cannot be assumed to be zero, as EPA does in its WARM model and in the “adjusted” GHG emissions data in all of its emissions databases.

Not all carbon in the biosphere is the same in terms of global warming. Carbon in soils, in trees and other plant matter, and even “biogenic” carbon stored in landfills does not contribute to global warming. Only carbon in the air does. The atmosphere does not distinguish between CO\textsubscript{2} from a biogenic source or a fossil source.

The time frame also matters. Even if, for every ton of paper packaging and yard waste burned, someone was diligently planting extra trees that would not otherwise be planted, these new trees cannot instantly absorb the CO\textsubscript{2} that it took another tree a lifetime to accumulate. Nothing instantly draws down all of the carbon pollution that is assumed to be zero in DEP’s modeling.

EPA’s analysis of CO\textsubscript{2} impacts shows that, for a given amount of CO\textsubscript{2} released today, about half will be taken up by the oceans and terrestrial vegetation over the next 30 years, a further 30% will be removed

134 Mike Ewall, “Biomass Incineration and Climate,” Energy Justice Network, March 2015. \url{www.energyjustice.net/biomass/climate}

135 Haberl, et. al., “Correcting a fundamental error in greenhouse gas accounting related to bioenergy,” Energy Policy, 45 (2012) 18–23, p.19. \url{www.sciencedirect.com/science/article/pii/S0301421512001681} “The assumption of carbon neutrality is often justified on the grounds that burning biomass only returns the carbon absorbed by growing plants to the atmosphere. Plants do absorb carbon, but this line of thought makes a ‘baseline’ error because it fails to recognize that if bioenergy were not produced, plants not harvested would continue to absorb carbon and help to reduce carbon in the air. Because that carbon reduction would occur anyway and is counted in global projections of atmospheric carbon, counting bioenergy that uses this carbon as carbon-neutral results in double-counting.”
over a few centuries, and the remaining 20% will slowly decay over time such that it will take many thousands of years to remove from the atmosphere. The “it’ll grow back” argument neglects the fact that it takes too long to recapture the CO₂ that is instantly released from burning. With global warming already upon us, we cannot afford to be relying on fuels that release more CO₂ than coal, and wait decades for nature to compensate. Given the need to avoid global warming tipping points (like the melting of ice sheets and arctic tundra) to avert catastrophic levels of warming, we must move as quickly as possible to reduce the county’s GHG emissions to zero, as County Council and the County’s draft Climate Action Plan have recognized.

Biomass is not carbon neutral in a meaningful time-frame. The “it’ll grow back” argument neglects the fact that it takes too long to recapture the CO₂ that is instantly released from burning. With global warming already upon us, we cannot afford to be relying on fuels that release more CO₂ than coal, and wait decades for nature to compensate. Given the need to avoid global warming tipping points (like the melting of ice sheets and arctic tundra) to avert catastrophic levels of warming, we must move as quickly as possible to reduce the county’s GHG emissions to zero, as County Council and the County’s draft Climate Action Plan have recognized.

Burning trees and other “biomass” releases 50% more CO₂ than coal to produce the same amount of energy. Studies of “biomass” burning have shown that it takes about 45-75 years of tree regrowth to just get that extra pulse of CO₂ down to the level where it’s just as bad as coal burning. In that time lag, real CO₂ molecules in the atmosphere are heating the planet, pushing us toward more tipping points.

In 2010, the Commonwealth of Massachusetts commissioned the Manomet Center for Conservation Sciences to conduct the landmark study that showed this carbon debt, making biomass worse than coal for the climate over the first 45-75 years. Even these shocking figures are conservative and likely underestimate the global warming impacts of biomass, meaning that it takes even longer for biomass to become equivalent to coal. This is due to several assumptions in the Manomet report, including that large trees are used for biomass (cutting smaller trees has a greater impact), that logged stands are not recut before they can fully take in the carbon they released, that a high portion of treetops and limbs are burned, and that soil carbon emissions are negligible (they aren’t). Further studies have affirmed that parity with fossil fuels could take as much as 200-300 years.

Of course, parity with fossil fuels is not carbon neutrality. It takes centuries to millennia to approach carbon neutrality, which is never truly reached — especially since trees are likely to be harvested again before such neutrality could be approached. Since trees are likely to be harvested again before parity with fossil fuels can be reached, this negates any equivalence with fossil fuels, and making the carbon balance far worse than coal burning.

143 Bjart Holtsmark, “The outcome is in the assumptions: analyzing the effects on atmospheric CO₂ levels of increased use of bioenergy from forest biomass,” GCB Bioenergy (2012). onlinelibrary.wiley.com/doi/10.1111/gcbb.12015/abstract (full copy online at: www.maforests.org/Biomass%20Assumptions.pdf)
In 2011, EPA empaneled a Science Advisory Board (SAB) to help determine how to best account for carbon emissions from different biomass fuels. The SAB rejected the idea that biomass can automatically be treated as carbon neutral and concluded that EPA must differentiate biomass types:

“Carbon neutrality cannot be assumed for all biomass energy a priori. There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock’s production and consumption cycle. There is considerable heterogeneity in feedstock types, sources and production methods and thus net biogenic carbon emissions will vary considerably.”

As governments respond to climate change, we can expect some regulatory uncertainty within the county’s 2026-2040 planning timeframe. Carbon regulation is just a matter of time, and the regulatory approach toward biogenic carbon is sure to catch up to the science at some point. In New York, the electric grid operator, NYISO, is developing a Carbon Pricing Policy that would not exempt trash incinerators. Covanta has stated that such a policy would cost its four incinerators on Long Island $31 to 43 million a year, and “will likely result in [incinerators] closing.” Aside from being the right thing to do for climate change, the County will be in the best and most prudent position going into an uncertain regulatory future if our planning uses all available data and transparently accounts for our total greenhouse gas emissions and liability.

However, DEP is relying on EPA’s WARM model that does not reflect current scientific understandings of biogenic carbon. The 2019 analysis for County Council of the two models found that EPA’s warm model holds landfills and incinerators to different standards: “WARM uses a carbon accounting method that does count methane emissions from landfills but fails to count biogenic emissions from the combustion of organic materials.”

The EPA’s WARM model documentation explains that this is intentional:

- “Note that CO2 from combustion of biomass (such as paper products and yard trimmings) is not counted because it is biogenic.”
- “Although combustion also releases the carbon contained in yard trimmings in the form of CO2, these emissions are considered biogenic and are not included in the WARM net emission factor.”
- “GHG emissions from bio-energy are treated as biogenic emissions that do not contribute to the GHG emission factor.”

150 Id. at 1-14 (PDF p. 17).
• “Only the CH₄ portion of LFG is counted in WARM, because the CO₂ portion is considered of biogenic origin and therefore is assumed to be offset by CO₂ captured by regrowth of the plant sources of the material.”¹⁵¹

Ignoring two-thirds of the CO₂ emissions from incineration because they’re “biogenic,” while counting methane emissions from landfills (basically all of which are “biogenic” in that they originate from decaying organic materials) compounds the pro-incineration bias of the WARM model. The MEBCalc model includes these GHG emissions from both sources.

The proportion of municipal solid waste that is considered to be “biogenic” is changing over time, and the efforts to ignore incinerator GHG emissions are operating under older assumptions. In fact, even the latest available GHG data in public databases (EPA’s 2018 eGRID database) is based on outdated (and higher) assumptions of the biogenic content of municipal solid waste. The Energy Information Administration (EIA) and Environmental Protection Agency both used a 51/49 biogenic to fossil split for the past several years, but as more plastic enters the waste stream, the biogenic fraction is falling. EIA now assumes that just 45% of the carbon content (energy consumption) in municipal waste is “biogenic,” as indicated here:¹⁵²

Figure 3-5: EIA’s shrinking estimates of biogenic fraction of municipal solid waste

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>...</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogenic</td>
<td>57</td>
<td>56</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>55</td>
<td>54</td>
<td>51</td>
<td>51</td>
<td>45</td>
</tr>
<tr>
<td>Non-biogenic</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>46</td>
<td>46</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>...</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogenic</td>
<td>77</td>
<td>77</td>
<td>76</td>
<td>76</td>
<td>75</td>
<td>67</td>
<td>65</td>
<td>65</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>61</td>
</tr>
<tr>
<td>Non-biogenic</td>
<td>23</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>39</td>
</tr>
</tbody>
</table>

This chart shows the difference between the tonnage of the “biogenic” and fossil fractions of municipal solid waste (trash) and the carbon content or energy value fractions – and thus GHG emissions – of the waste. The “biogenic” fraction’s tonnage is now thought to be 61% while the carbon content is 45%.

Without seeing DEP’s inputs into EPA’s WARM model, and which “biogenic” fraction assumptions were used, we do not know to what degree DEP is discounting MCRRF’s emissions from the start. We also do not know if DEP factored in successful composting programs reducing the amount of organic material entering the waste stream over time. Failing to account for that would further bias the results in favor of incineration, as landfill GHG emissions would appear higher than they actually are.

¹⁵¹ Id. at 1-31 (PDF p.34).
Other studies have found biogenic carbon levels higher than those which the Energy Information Administration uses. The following chart from a 2013 study of the biogenic fraction of municipal solid waste (MSW), finds its carbon content to be over 60%.153

The trash incinerator industry’s trade association, Energy Recovery Council (ERC), currently uses similar faulty carbon accounting that excludes about 2/3rds of the CO\textsubscript{2} emissions from incineration because it’s from “biomass.” In its 2018 industry directory, ERC includes the following chart. Based on this faulty assumption, ERC argues that trash incinerators are a climate solution, with net negative carbon emissions.

The above chart shows the industry’s accounting acrobatics used to justify incineration. EPA follows much of this thinking, as reflected in the assumptions in its WARM model on which DEP relies.

C. Displacement of fossil fueled electric generation

Another faulty assumption used to minimize incinerator GHG impacts is that electricity generated by incineration displaces fossil fuels. Life-cycle analyses often include assumptions about electricity being displaced. The question is what sources of electricity generation are being displaced under existing Maryland law?

- Wind?
- Coal?
- Gas?
- The generation sources most likely used to meet Renewable Portfolio Standard (RPS) Tier 1 requirements? (wind or landfill gas)
- The fuel most likely used in development of new generation? (wind and natural gas)
- The fuel used to meet peak demand? (natural gas155)
- The system mix in the state?
- The system mix in the regional PJM grid?

Table 3-3: Electricity Generation Mix in PJM and Maryland

<table>
<thead>
<tr>
<th>Fuel</th>
<th>PJM 2020</th>
<th>MD 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>39%</td>
<td>37%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>35%</td>
<td>38%</td>
</tr>
<tr>
<td>Coal</td>
<td>19%</td>
<td>15%</td>
</tr>
<tr>
<td>Wind</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Hydro</td>
<td>1.9%</td>
<td>6%</td>
</tr>
<tr>
<td>Biomass, digester gas, landfill gas & waste incineration</td>
<td>0.7%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Multiple Fuels</td>
<td>0.7%</td>
<td>--</td>
</tr>
<tr>
<td>Solar</td>
<td>0.4%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Just 54% of the MD 2019 electricity generation was from combustion sources that release GHGs.

In any other state, there is room for debate on what would fill the gap. Maryland is the only state where trash incineration competes within Tier 1 of a tiered state Renewable Portfolio Standard (RPS). If trash incinerators closed, the power companies would have to fill the gap with another Tier 1 resource to meet their renewable energy requirement. This could not be fossil fuels. Wind now dominates Tier 1 and is the fastest growing new generation that could fill the gap.

The WARM model DEP used assumes, however, that fossil fuels are displaced. The WARM technical manual states, “[c]ombustion of MSW with energy recovery in a WTE plant also results in avoided CO2 emissions at utilities.”158

Without seeing the data DEP inserted into the WARM model, we cannot know whether these numbers are based on assumptions that incineration displaces coal, gas, or some other mix of generation. The WARM model defaults to using regional information and classifies Maryland with the South Atlantic region, which has one of the highest emissions factors in the country. This is not a suitable comparison for the state. Fossil fuels displacement assumptions cannot be justified due to how incineration competes with wind power as Tier 1 renewable energy.

D. Displacement of landfill emissions

In addition to subtracting the emissions of theoretically displaced fossil fuel generation, the incinerator industry also subtracts emissions from avoiding the use of landfills. This makes as much sense as allowing landfills to subtract the GHG emissions of incinerators to make landfill emissions appear to be negative. When comparing landfills to incinerators, one cannot allow either of them to subtract the emissions of the other! Doing so is entirely inappropriate, but allowing only one to subtract the GHG emissions of the other is dishonest accounting. EPA’s WARM model does not seem to do this, so we assume DEP did not adopt this incinerator industry accounting trick.

E. Landfill gas capture rate

One of the biggest factors in any GHG comparison of landfills and incinerators is the landfill gas capture rate. Incinerators immediately release into the air virtually all of the carbon, mostly as CO2, whether it came from oil-based plastics, or “biogenic” paper, wood, food scraps, or yard waste. Landfills, in contrast, sequester virtually all of the carbon in plastics, wood, and other durable materials (e.g. leather, rubber...). The food scraps, yard waste, and some of the paper degrade, however, and form landfill gas. Landfill gas is about half methane, half CO2, and is contaminated with hundreds of toxic chemicals. Because of the toxicity of the contaminants, modern landfills are required to capture the gas. Historically that involved flaring off the gas, but most landfills now burn the captured gas for energy. When burned, the methane becomes CO2, eliminating methane’s extra short-term warming impacts.

Significant debate surrounds calculating the percentage of landfill gas captured in collection systems. Some evidence shows that landfills managed as energy facilities manipulate conditions to increase the proportion of methane in the gas, using methods that cause more gas leakage, thereby exacerbating the problem. While EPA claims gas capture rates as high as 90%+, some global estimates are as low as 20%. The low estimate includes landfills that do not have any gas collection systems, as well as landfill gas releases decades after a landfill closes, when gas collection systems are assumed to no longer be in place if a second burst of gas formation occurs once the landfill cap degrades and water gets back in.

For modern U.S. landfills with active gas capture systems (all of the ones under consideration), 75% of gas is widely estimated to be captured. All four Virginia landfill operators gave this number when interviewed for the 2017 MEBCalc life cycle analysis for DC’s waste options.

The 2019 analysis for county council found that “[t]he assumption of 75% methane capture can be considered reasonable for the Montgomery County region as the number was arrived at through a survey of King and Queen County Landfill, Middle Peninsula Landfill, and Charles City Landfill, all of

160 See links to resources on landfill gas emissions in the top and sidebar at www.energyjustice.net/lfg

A study modeling the level of gas capture needed for landfilling to break even with incinerators on greenhouse gas emissions found the needed gas capture rate to be 50% to 70%. At a capture rate of 75%, a landfill would emit fewer GHGs than incineration, under MEBCalc’s methodology.\footnote{Jeffrey Morris, “Bury or Burn North America MSW? LCAs Provide Answers for Climate Impacts & Carbon Neutral Power Potential,” Environmental Science and Technology 44, no. 20 (2010): 7944-7945. pubs.acs.org/doi/10.1021/es100529f} Koon’s report to County Council that “[b]etween landfilling scenarios with methane capture, and [incineration], MEBCalc shows landfilling with methane capture to be preferable” with respect to GHG emissions.\footnote{Katy Koon, “An Evaluation of the Assumptions Underlying Environmental Assessments of Montgomery County’s Resource Recovery Facility,” Montgomery County Council Summer Fellows Program, 2019, p.17. www.montgomerycountymd.gov/COUNCIL/Resources/Files/Summer_Fellows/2019/KatyKoon.pdf}

A related, and significant, variable is the methane oxidation rate. This is the percentage of methane trying to seep out of a landfill uncaptured which is converted to less-potent carbon dioxide by bacteria in landfill cover soils. The Environmental Protection Agency has assumed a default 10% methane oxidation rate, but emerging research shows that oxidation can range from 10 to 35%.\footnote{Arlene Karidis, “What Landfill Operators Should Know About Methane Oxidation,” Waste 360, Dec 11, 2020. www.waste360.com/landfill/what-landfill-operators-should-know-about-methane-oxidation}

\section{F. Assuming conventional landfilling is the only alternative}

The typical comparison of incineration (and landfilling ash) vs. direct landfilling does not look at other options. The Zero Waste approach is a third option that – like the other two – still has a landfill at the end of the system. Instead of reducing the volume in a landfill by incinerating trash to concentrate toxic chemicals in a lower volume but highly toxic and heavy ash, a Zero Waste approach reduces the volume going to the landfill through all of the upstream “rethink/redesign/reduce/reuse/recycle/compost” options, combined with specific steps on the back end.

That back end is known as “MRBT to landfill.” MRBT stands for material recovery and biological treatment. With material recovery, after people source separate for reuse, recycling, and composting, the remaining trash is processed to remove additional recyclables. Biological treatment stabilizes the remaining organic fraction using aerobic composting or anaerobic digestion (digestion is more effective). This gets the methane generating potential out so the landfill is not as gassy and stinky. It also removes water weight, saving money on transportation and disposal with fewer tons to haul and tip.

A study of what to do with the “leftovers” on the path toward Zero Waste compares the environmental harms and benefits of incineration vs. landfilling (with different gas capture rates) vs. the Zero Waste “MRBT to landfill” approach with both high and low effectiveness rates of recovering extra recyclables. As shown in Figure 3-8, the “MRBT to landfill” approaches were most beneficial. Landfilling (landfill gas to energy, or “LFGTE”) where the landfill captures 80% of their gas was also better than average. Incineration (“WTE”) was worse than average, and the modeling of a landfill where only 40% of the landfill gas is captured was the worst (though no such landfills are an option, or are being considered or recommended).\footnote{Jeoffrey Morris, et. al., “What is the best disposal option for the ‘leftovers’ on the way to Zero Waste?,” May 2013. www.ecocycle.org/specialreports/leftovers}
G. Methane’s global warming potential

EPA has long been using outdated climate science in estimating methane’s global warming potential. Even under Obama’s EPA, simply to stay consistent with EPA databases, the agency issued two rules—one on gas pipelines, another on landfill gas166—that intentionally use the outdated methane (CH4) 100-year global warming potential (GWP) of 25 times the heating effect of CO2. The WARM model, updated in November 2020, is no different. The WARM manual states: “CH4 has a GWP of 25... WARM uses GWPs from IPCC (2007).”167 Since 2013, the International Panel on Climate Change (IPCC), the world’s authority on global warming, has understood methane’s global warming potential to be 34 times (greater than CO2) over 100 years and 86 times over 20 years.168 This county and EPA’s choice of outdated methane data favors landfills, contrary to other assumptions described above. We must reaffirm, however, that even if the County and the EPA corrected this error and used the IPCC standard, the MCRRF is still more polluting than a landfill alternative.

166 EPA intentionally used the outdated methane GWP in its June 2016 Oil and Natural Gas Rule (www.govinfo.gov/content/pkg/FR-2016-06-03/pdf/2016-11971.pdf) and its August 2016 Landfill Gas Rule (www.govinfo.gov/content/pkg/FR-2016-08-29/pdf/2016-17687.pdf) simply “to be consistent with and comparable to key Agency emission quantification programs such as the Inventory of Greenhouse Gas Emissions and Sinks (GHG Inventory), and the Greenhouse Gas Reporting Program (GHGRP).” See footnotes 15 and 5 in these rules, respectively.

H. Transportation emissions

One common assumption not supported by science and shared by the county DEP is that transportation emissions are significant and that transporting waste long-distances is too polluting to justify landfiling over using a local incinerator.

The MEBCalc analysis comparing life cycle CO₂ equivalent emissions from incineration in-county (and ash landfiling in VA) with transporting waste to various landfills in the region, finds that transportation emissions are minor compared to the emissions from landfiling or incineration, even if waste is transported by truck, not rail. If using trucks, the transportation share of the emissions from direct use of landfills average just 3% of the total GHG impacts of any of the landfills within 250 miles (all but Tunnel Hill), and 0.5 to 4.3% of the total if transported by rail (high end is Tunnel Hill). In any case, GHG emissions from using in-county incineration exceeds landfill GHG emissions from even the most remote landfills being considered.

Figure 3-9: Transportation Emissions are a Tiny Fraction of Waste System GHGs

100-year CO₂e (lbs/ton of waste disposed)

What can we learn from this chart?

1) That incineration (red) releases far more global warming pollution than landfiling (yellow), in any scenario.
2) That transportation emissions are insignificant, whether by rail (black) or truck (blue), compared to the emissions associated with the landfill or incinerator, even with long distances to reach more remote landfills.
3) That rail is less carbon-intensive than trucking, but not as significant as choosing a landfill with less rainfall and/or a landfill that collects and flares its gas rather than combusting it for energy (more apparent in Fig. 3-10).
4) That investing in waste reduction will have more of an impact than investing in rail transportation over trucking.
Since it’s also important to understand global warming impacts in terms of their short-term affects, using the 20-year time horizon shows the greater effects of methane that isn’t captured at landfills. Even factoring this in, however, landfills still do not rise to the level of GHG emissions from directly injecting all of the carbon into the atmosphere via incineration. The most significant differences between landfills below are that those with lower emissions receive less rainfall (decreasing gas generation) and/or flare their collected gas instead of burning it for energy.

Figure 3-10: Transportation Emissions are a Tiny Fraction of Waste System GHGs (even over 20 years)

20-year CO₂e (lbs/ton of waste disposed)
The relatively small role of transportation emissions is not an anomaly. In a life cycle analysis of food systems, the preference for local food is far less important than the type of food consumed, as transportation emissions in our global food system are still tiny compared to the GHG impacts of animal production relative to plant-based foods.\(^{169}\)

Figure 3-11: Greenhouse gas emissions across the supply chain

Chapter 4: Landfilling vs. Incineration

Landfills are a problem, but incineration (and landfilling ash) is the bigger problem. It's not the size of landfills that is harmful, but their toxicity. Landfills harm groundwater when they leak, and release harmful gases into the air (not just greenhouse gases). Incinerators, however, release far more air pollution, and fill landfills with toxic ash. The combustion process creates new toxic chemicals that are released into the air and ash. The greater surface area of ash particles allows rainwater trickling through the landfill to liberate more contaminants and leach them into groundwater. When Montgomery County “beneficially uses” ash as landfill cover (and for internal roads in landfills, where trucks can kick up the toxic ash dust), this ash is released into the air, further contaminating the community.

There is no way to “clean” incinerator ash as some claim, but some of MCRRF’s ash is now being trucked past Philadelphia to a new Covanta facility in Pennsylvania that seeks to remove metals from ash. No disposition of incinerator ash is safe, as the ash contains concentrated toxic chemicals including those captured in pollution control systems such as dioxins, lead, cadmium, and mercury. While the industry will claim that they test the ash and prove it’s non-hazardous, this is misleading. The Environmental Protection Agency (EPA) used to categorically classify incinerator ash as non-hazardous. A 1994 United States Supreme Court decision overturned this practice and ordered that incinerator ash be regulated as hazardous if it tests hazardous. Having to dispose of ash in hazardous waste landfills would financially cripple the industry. Following this court decision, EPA and the industry adapted by changing the test method and adopting other measures that assure ash passes the test. Instead of testing the contents of the ash, the test measures what leaches out under short-term laboratory conditions. Ash would often fail the test for lead and cadmium, but pH manipulation enables it to clear the test as “non-hazardous,” even though real-life, long-term conditions will cause toxic metals to leach out over time.

A 2017 life cycle analysis, using the comprehensive MEBCalc model, compared DC’s use of Covanta Fairfax to four landfills in southeastern Virginia. The analysis found that incineration closer to home is worse than trucking waste 2-5 times as far to reach landfills. Incineration produced more global warming pollution, and higher emissions of particulate matter, acid gases, toxic chemicals, and chemicals that form smog. DEP used EPA’s WARM model, which looks solely at climate change.

The MEBCalc model uses several conservative assumptions that weigh against landfills or give a free pass to incinerators. In the analysis for this report, we use a 15% methane oxidation rate, the 20-year global warming impacts of methane, and the latest science which shows methane to be more potent than previously understood (EPA’s WARM model uses older numbers). On toxicity, for lack of robust data, we did not include data on toxic chemical leaching from incinerator ash, but did include leaching from trash (ash is likely worse). Dioxin emissions were not included for lack of good data. We also did not factor in the environmental impacts of reagents used for pollution control, such as mining limestone for lime scrubbers, coal for carbon injection systems, or natural gas for ammonia used in NOx control.

170 Mike Ewall, “Landfills are bad, but incinerators (with ash landflling) are worse,” Energy Justice Network factsheet. www.energyjustice.net/files/incineration/incineration_vs_landfills.pdf
174 www.energyjustice.net/files/incineration/incineration.pdf - see slides 60-96 for the landfill vs. incinerator comparison data and analysis
Table 4-1: Comparison of features in three major life cycle analysis tools

<table>
<thead>
<tr>
<th>Features</th>
<th>WARM(^{176})</th>
<th>MSW DST(^{177})</th>
<th>MEBCalc(^{178})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impacts included in model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Climate change</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>-Human health (respiratory)</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Human health (toxic chemicals)</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Human health (carcinogens)</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Eutrophication</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Acidification</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Eco-toxicity</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Ozone depletion</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>-Smog formation</td>
<td>limited</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Monetized Environmental Score</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Energy Impacts Included</td>
<td>✔</td>
<td>✔</td>
<td>limited</td>
</tr>
<tr>
<td># of MSW Materials Included</td>
<td>60</td>
<td>~30</td>
<td>27</td>
</tr>
</tbody>
</table>

In a new analysis prepared for this report, we applied the MEBCalc model to Montgomery County data. We compare using the MCRRF to using any of ten landfills in Pennsylvania, Virginia, and Ohio via truck or rail. The analysis shows that incineration is far worse than landfilling in any of these locations overall, and specifically in terms of global warming pollution, and emissions of nitrogen oxides, particulate matter, acid gases, toxic chemicals, and chemicals that form smog. The analysis uses the latest available data on Montgomery County’s waste composition (2017), the MCRRF incinerator’s air emissions data (averaging 2011-2017), truck and rail hauling distances for each scenario, and rainfall levels for the landfills (impacting landfill gas generation).

Factoring in transportation emissions and using a 20-year time frame (unfavorable to landfills on climate, due to short-term impact of leaking methane gas), greenhouse gas emissions are 66-160% higher from incineration than landfilling, emissions of acid gases from incineration are 86-2,735% higher, asthma impacts are 149-1,485% higher, fine particulate matter (PM2.5) emissions are 1,741-13,268% higher, and emissions of toxic pollutants are 5,258-24,529% higher. While ozone-depleting chemicals are emitted from landfills in tiny quantities that are not released from incinerators, and some other small pollutants are worse from landfills if landfill gas is burned in internal combustion engines. When a single “combined” score is assigned by monetizing the nine environmental and health impacts studied, incineration at MCRRF is calculated to be 151-394% more costly than landfilling Montgomery County’s trash.\(^{179}\) Put more simply, the health and environmental costs of incinerating the county’s trash are 2.5 to 5 times as harmful as landfilling.

\(^{176}\) U.S. Environmental Protection Agency, Waste Reduction Model (WARM). www.epa.gov/warm

\(^{177}\) RTI International, Municipal Solid Waste Decision Support Tool (MSW DST). mswdst.rti.org

\(^{178}\) Sound Resource Management Group, Monetizing Environmental Benefits Calculator (MEBCalc). srmginc.com/mebcalc/

\(^{179}\) Calculated using the Monetizing Environmental Benefits Calculator (MEBCalc), Sound Resource Management Group. srmginc.com/mebcalc/
A. Life Cycle Assessment Results (MEBCalc analysis)

Table 4-2: MCRFF vs. Landfills on Nine Modelled Environmental Criteria and Monetized Summary

<table>
<thead>
<tr>
<th>Impact</th>
<th>Measure</th>
<th>Incineration (MCRFF)</th>
<th>Landfilling (range of 10 landfills)</th>
<th>Which is worse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td>Carbon dioxide (CO₂)</td>
<td>2,023.89</td>
<td>779 – 1,220</td>
<td>Incineration</td>
</tr>
<tr>
<td>Human health (toxic chemicals)</td>
<td>Toluene</td>
<td>219.80</td>
<td>0.89 – 4.10</td>
<td>Incineration</td>
</tr>
<tr>
<td>Smog formation (asthma)</td>
<td>Ozone (O₃) [NOx & VOCs]</td>
<td>38.64</td>
<td>2.43 – 15.51</td>
<td>Incineration</td>
</tr>
<tr>
<td>Acidification (acid rain, respiratory)</td>
<td>Sulfur dioxide (SO₂)</td>
<td>2.38</td>
<td>0.08 – 1.28</td>
<td>Incineration</td>
</tr>
<tr>
<td>Human health (carcinogens)</td>
<td>Benzene</td>
<td>0.46</td>
<td>0.005 – 1.119</td>
<td>* (Depends)</td>
</tr>
<tr>
<td>Human health (respiratory/heart)</td>
<td>Fine particulate matter (PM₂.₅)</td>
<td>0.23</td>
<td>0.001 – 0.012</td>
<td>Incineration</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>Nitrogen</td>
<td>0.07</td>
<td>0.036 – 0.159</td>
<td>* (Depends)</td>
</tr>
<tr>
<td>Ozone depletion</td>
<td>CFC-11</td>
<td>0</td>
<td>0.001 – 0.004</td>
<td>Landfilling</td>
</tr>
<tr>
<td>Eco-toxicity</td>
<td>2,4-D herbicide</td>
<td>0.00088</td>
<td>0.00002 – 0.00128</td>
<td>* (Depends)</td>
</tr>
<tr>
<td>Monetized summary</td>
<td>U.S. Dollars</td>
<td>$258.58</td>
<td>$52.37 – $102.97</td>
<td>Incineration</td>
</tr>
</tbody>
</table>

Note: each measure includes weighted values of related pollutants. For example, global warming impacts include methane and nitrous oxide (N₂O) emissions, and toxic chemical impacts include mercury emissions. Impacts are weighted over a 20-year time frame. Landfill options assume a gas capture rate of 75%.

* Carcinogenicity, eutrophication, and eco-toxicity are worse from incineration compared to a landfill that flares its gas, but are worse from landfilling if landfill gas is burned for energy in an internal combustion engine.

The following charts summarize all of the impacts with monetized totals, first with a composite of the 10 landfills studied (right), showing that incineration in-county is 3.2 times as harmful to health and the environment than landfilling, even when hauling long-distance to landfill by diesel truck.

For further background on how landfills compare to incinerators, see the four-page factsheet attached, titled “Landfills are bad, but incinerators (with ash landfilling) are worse.”

180 Landfills are bad, but incinerators (with ash landfilling) are worse, Energy Justice Network. www.energyjustice.net/files/incineration/incineration_vs_landfills.pdf
Figure 4-2: Monetized Environmental Impact of MCRRF Incinerator vs. Five Landfill Options

Monetized Environmental Impact
($ health/environmental impact per ton of waste disposed)

The monetized environmental impact encompasses the combined impacts of the nine mutually-exclusive environmental and health criteria broken down in the following charts, shown in order of greatest environmental impact caused by the waste facilities analyzed (global warming) to the smallest impact (eco-toxicity).

These figures show specific comparisons to the five most recommended landfills identified in Chapter 7. The modeled landfill in Virginia (Maplewood) has rail access, so separate bars are shown for truck vs. rail for that landfill to demonstrate the difference.

Bigger than the difference between truck and rail is the difference with lower rainfall (Sandy Run Landfill), or flaring (all but Maplewood, which burns landfill gas in internal combustion engines that are more polluting than flares).
Figure 4-3: Global Warming Impacts of MCRRF Incinerator vs. Five Landfill Options

Global Warming
(lbs 20-year CO2e per ton of waste disposed)

Measures the potential increase in global warming due to anthropogenic emissions. Includes emissions of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). The reference substance for climate change potential is carbon dioxide and the pollutants that have climate impacts are characterized and converted into carbon dioxide equivalents, CO₂e.
Figure 4-4 Toxic Air Pollution from MCRRF Incinerator vs. Five Landfill Options

Measures potential human health impacts (other than respiratory and carcinogenic effects) from releases of chemicals that are toxic to humans. There are many chemical and heavy metal pollutants that are toxic to humans, including 2,4-D, benzene, DDT, formaldehyde, permethrin, toluene, chromium, copper, lead, mercury, silver, and zinc. The reference substance for human toxicity potential used in MEBCalc is toluene and pollutants that have human toxicity impacts are characterized and converted by EPA’s TRACI model into toluene equivalents.

Figure 4-5: Smog-forming Emissions from MCRRF Incinerator vs. Five Landfill Options

Measures the potential for chemical compounds released into the atmosphere to react with sunlight, heat and fine particles to form ground-level ozone (O3). For example, nitrogen oxides (NOx) and volatile organic compounds (VOCs) released during fuel combustion are some of the chemical compounds that contribute to ground-level smog formation, contributing to asthma attacks and other respiratory distress. The reference substance for smog formation is ozone itself.
Figure 4-6: Acid Gas Emissions from MCRRF Incinerator vs. Five Landfill Options

Measures potential environmental impacts from releases of acidifying compounds which affect trees, soil, buildings, animals and humans. The main pollutants involved in acidification are sulfur, nitrogen and hydrogen compounds – e.g., sulfur oxides, sulfuric acid, nitrogen oxides, hydrochloric acid, and ammonia. The reference substance for acidification potential is sulfur dioxide and the pollutants that have acidifying impacts are characterized by sulfur dioxide equivalents.

Figure 4-7: Cancer-causing Emissions from MCRRF Incinerator vs. Five Landfill Options

Measures potential human health impacts from releases of chemicals that are carcinogenic to humans. There also are many chemical and heavy metal pollutants that are carcinogenic to humans, including 2,4-D, benzene, DDT, formaldehyde, kepone, permethrin, chromium, and lead. The reference substance for human carcinogenic potential is benzene and the pollutants that have human carcinogenic impacts are aggregated into benzene equivalents.
Figure 4-8: Respiratory Impacts from MCRRF Incinerator vs. Five Landfill Options

Measures potential human health impacts from releases of coarse particles known to aggravate respiratory conditions such as asthma, releases of fine particles that can lead to more serious respiratory symptoms and disease, and releases of particulate precursors such as nitrogen oxides and sulfur oxides. The reference substance for human respiratory disease potential is particulate matter 2.5 microns or smaller, PM2.5. Pollutants that have respiratory health impacts are converted into reference pollutant equivalences.

Figure 4-9: Eutrophication Impacts from MCRRF vs. Five Landfill Options

Measures potential environmental impacts from addition of mineral nutrients to the soil or water resulting from emissions of eutrophying pollutants to air, soil or water. The addition to soil or water of mineral nutrients, such as nitrogen and phosphorous, can yield generally undesirable shifts in the number of species in ecosystems and a reduction in ecological diversity. In water, nutrient additions tend to increase algae growth, which can lead to reductions in oxygen and death of fish and other species. The reference substance for waterway eutrophication potential is nitrogen and pollutants that have waterway eutrophying impacts are characterized by nitrogen equivalents.
Figure 4-10: Ozone-depleting emissions from MCRRF vs. Five Landfill Options

Measures the potential for chemicals released into the atmosphere to cause degradation of the Earth’s ozone layer. The reference substance for ozone depletion potential is trichlorofluoromethane, or CFC-11, a chlorofluorocarbon.

Incineration does not release ozone-depleting chemicals, but small amounts are emitted in landfill gas.

Figure 4-11: Eco-toxic Emissions from MCRRF vs. Five Landfill Options

Measures the potential for chemicals released into the environment to harm terrestrial and aquatic ecosystems, including wildlife. There are many chemical and heavy metal pollutants that are toxic to ecosystems, including 2,4-D, benzene, DDT, ethyl benzene, formaldehyde, kepone, permethrin, toluene, chromium, copper, lead, silver, and zinc. The reference substance for ecoxicity potential used in MEBCalc is 2,4-D and pollutants that have toxicity impacts to ecosystems are characterized by 2,4-D equivalents.
Chapter 5: Environmental Racism

Title VI of the Civil Rights Act of 1964 forbids recipients of federal funds (including Montgomery County) from taking official actions that have discriminatory effects on racial minorities – regardless of intent.181 Waste management decisions are not excluded, putting an affirmative obligation on the county to evaluate decisions as to ensure no such discriminatory effects.

The term “environmental racism” was coined in response to the siting of hazardous waste facilities in communities of color.182 This is a documented trend with many polluting industries, particularly in the trash incineration industry, which especially impacts Black residents more than all others. Studies have shown that race is more of a factor than class, which is why the focus of the environmental justice movement is on the pattern of racial discrimination.183 In the trash incineration industry in the United States, the average trash incinerator is in a community with a higher-than-average median household income, but a lower-than-average white population.184

The location of the county’s trash incinerator in Dickerson differs from the overall trend. Montgomery County’s waste disposal system, however, still raises concerns about inequities resulting from the concentration of noxious facilities in Dickerson area, the downwind impacts of Covanta’s emissions, and the dumping of toxic ash on majority Black communities in Virginia.

A. Concentration of noxious facilities

It’s typical for certain communities to become “sacrifice zones,” where undesirable industries are concentrated. Once one undesirable facility is sited, others tend to cluster at the same location, usually aided by public policy decisions.

\begin{center}
\textbf{Picture 5-1: Montgomery County Resource Recovery Facility}
\end{center}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Montgomery County Resource Recovery Facility}
\end{figure}

182 Environmental Justice & Environmental Racism, www.ejnet.org/ej

184 Spatial Justice Test of U.S. trash incinerator locations, Energy Justice Network. www.spatialjusticetest.org/test/1127.html Note that a race ratio greater than one means that a demographic group is more impacted than others at the distance indicated. If all incinerators were distributed fairly by race, all lines would follow a ratio of one.
As is often the case, noxious facilities are pushed into communities that have less representation, or less perceived political power, including more rural, conservative, and farming communities.185

Dickerson has been Montgomery County’s dumping ground for decades.186 The Dickerson community has been burdened with:

- GenOn’s 933-megawatt coal-, oil-, and gas-fired power plant (the three coal units, totaling 588 megawatts, closed in July 2020, while the three other fossil fuel units remain)
- GenOn’s leaking Westland coal ash landfill with five million tons of coal ash threatening groundwater (at the direction of MDE, GenOn is currently removing the ash because a recent study found ground water contamination due to ash leakage)
- The county-owned, Covanta-operated Montgomery County Resource Recovery Facility trash incinerator, burning all of the county’s trash and much of its construction and demolition waste
- A sewage sludge processing plant (Sugarloaf Citizens’ Association sued the county, forcing this location to be converted to the yard waste composting facility)
- The county’s Yard Trim Composting Facility that processes all the county’s yard waste
- Neutron Products, Inc., a nuclear isotope-manufacturer with thousands of violations and off-site radioactive contamination problems that caused the site to be listed as a Superfund site187
- Dickerson Quarry, now a water-filled “attractive nuisance”188
- A 750-megawatt coal gasification plant proposed (but fought and not built) in the 1980s adjacent to the other coal plant and then-proposed trash incinerator189
- The National Institutes of Health Animal Center that tests deadly viruses on animals190
- The Montgomery County Police Department Outdoor Firing Range where the Montgomery County Bomb Squad conducts explosives training191
- The county’s highest radon levels192
- The potential Site 2 Landfill (permitted, but actively being farmed)

If the incinerator were as clean as DEP, Covanta, and the Authority claim, it would have made more sense to build it at the Shady Grove transfer station, where it would have been more centrally located to serve the county. Likely, the political winds pushed the incinerator into the county’s sacrifice zone, but the literal winds blow the trash, in the form of air pollution, back to the county’s population that generates most of it.

188 “Our Stand by Me afternoon,” www.morningbrayfarm.com/tag/dickerson-quarry/
B. Downwind Populations

Prevailing winds blow the incinerator’s emissions southeast toward the population centers in the county.\(^{193}\) Montgomery County has three of the top five, and four of the top ten, most diverse cities in the United States, and can boast having one of the largest immigrant populations in the state.\(^{194,195}\) It is the 27\(^{th}\) most diverse county out of 3,151 counties in the U.S.\(^{196}\)

There is no magic bubble over Dickerson. While the Agricultural Reserve absorbs the brunt of the adverse impacts, winds carry much of the burden to the rest of the county’s residents. And what the air doesn’t carry to the rest of the county, the food and drinking water supply can.

C. Ash Dumping on Black Communities

When the incinerator opened in 1995, trash that previously went to the Oaks Landfill on Olney-Laytonsville Rd in Gaithersburg was replaced by the incinerator’s ash.\(^{197}\) The closest residents to Oaks Landfill (102 people living within one mile) are 41% Black, 11% Latinx, 10% Asian, and 38% white, though the population is 60-70% white in the 1.5 to 5-mile radius beyond that.\(^{198}\) Nationally, the United States population is 64% white, non-Hispanic.

In 1997, the Oaks Landfill closed and the county started shipping ash to the Brunswick Landfill in Brunswick County, Virginia.\(^{199}\) That community is 67% Black within a 5-mile radius.\(^{200}\)

In 2011, the county shifted to using the Old Dominion Landfill in Henrico County, just outside of Richmond, Virginia. That community is 72% Black within a 5-mile radius and far more populated than the community next to the Brunswick Landfill.\(^{201}\) Indeed, the community surrounding the Old Dominion Landfill has a larger population of Black residents than any other community surrounding a landfill serviced by CSX rail.\(^{202}\)

\(^{193}\) Gaithersburg Wind Roses. mesonet.agron.iastate.edu/sites/windrose.phtml?station=GAI&network=MD_ASOS

\(^{197}\) “Oaks Landfill,” Montgomery County Department of Environmental Protection. www.montgomerycountymd.gov/sws/facilities/oaks/

\(^{201}\) “Old Dominion Landfill,” Energy Justice Network Map. www.energyjustice.net/map/displayfacility-71994.htm

Figure 5-1: Tonnage of MCRRF Incinerator Ash Disposed in Virginia Landfills

Virginia and Maryland waste management databases.
Table 5-1: Demographics within 5 miles of CSX rail accessible landfills

<table>
<thead>
<tr>
<th>Landfills served by CSX rail</th>
<th>City</th>
<th>County</th>
<th>St</th>
<th>Pop.</th>
<th>Black</th>
<th>White</th>
<th>Median Household Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunswick Landfill</td>
<td>Lawrenceville</td>
<td>Brunswick</td>
<td>VA</td>
<td>5,782</td>
<td>67%</td>
<td>29%</td>
<td>$23,000</td>
</tr>
<tr>
<td>Old Dominion Landfill</td>
<td>Richmond</td>
<td>Henrico</td>
<td>VA</td>
<td>81,000</td>
<td>72%</td>
<td>23%</td>
<td>$39,000</td>
</tr>
<tr>
<td>King George Landfill</td>
<td>Sealston</td>
<td>King George</td>
<td>VA</td>
<td>5,497</td>
<td>13%</td>
<td>80%</td>
<td>$81,000</td>
</tr>
<tr>
<td>Maplewood Landfill</td>
<td>Jetersville</td>
<td>Amelia</td>
<td>VA</td>
<td>1,640</td>
<td>25%</td>
<td>70%</td>
<td>$58,000</td>
</tr>
<tr>
<td>Atlantic Waste Landfill</td>
<td>Waverly</td>
<td>Sussex</td>
<td>VA</td>
<td>3,266</td>
<td>68%</td>
<td>29%</td>
<td>$56,000</td>
</tr>
<tr>
<td>Lee County Landfill</td>
<td>Bishopville</td>
<td>Lee</td>
<td>SC</td>
<td>7,165</td>
<td>72%</td>
<td>25%</td>
<td>$35,000</td>
</tr>
<tr>
<td>Taylor County Disposal Landfill</td>
<td>Mauk</td>
<td>Taylor</td>
<td>GA</td>
<td>1,070</td>
<td>16%</td>
<td>87%</td>
<td>$34,000</td>
</tr>
<tr>
<td>Sunny Farms Landfill</td>
<td>Fostoria</td>
<td>Seneca</td>
<td>OH</td>
<td>3,091</td>
<td>2.6%</td>
<td>89%</td>
<td>$60,472</td>
</tr>
<tr>
<td>Tunnel Hill Reclamation Landfill</td>
<td>Rehoboth</td>
<td>Perry</td>
<td>OH</td>
<td>6,285</td>
<td>0.2%</td>
<td>98%</td>
<td>$39,000</td>
</tr>
</tbody>
</table>

D. Analyzing DEP’s Environmental Justice Analysis

DEP’s environmental justice (EJ) analysis does not include any analysis of the communities impacted by the landfilling of the county’s incinerator ash. It also does not look at cumulative impacts on Dickerson by examining the historic or current pollution burden. Finally, DEP does not look at the downwind impacts of the incinerator’s air emissions on the rest of the county. When comparing a landfill to an incinerator, the impacts from incineration are spread across a much wider area, making it appropriate to use a wider radius than whichever radius DEP used to identify the demographics around the various waste facilities.

DEP did not specify what radius it used to evaluate demographics. Even with a sophisticated census mapping tool and precise facility locations, we could not reproduce DEP’s demographic data at 1, 2, 3, or 5-mile radii. It would help to know what software, radius, and precision of facility location DEP used in its demographic analysis.

DEP’s analysis puts 76% of the weight on race and economic class demographics and just 4% on population. Racial composition of the community is weighted 40% across three overlapping measures, and economic class is weighted 36%, also with three overlapping measures. Population density is the smallest factor, weighted at only 4%. The two remaining factors are hauling distance and remaining capacity at the landfill, which are not EJ measures and should not be part of an EJ analysis.

An appropriate EJ analysis would rule out the four majority Black landfill communities as a violation of Title VI of the Civil Rights Act – including the Old Dominion landfill currently used to dump the county’s ash. A broader analysis would acknowledge that hauling distance deserves a low weight, and that **overall population impacted should be one of the highest criteria, so that the fewest people are harmed.**

With a more equal weighting of criteria, or with one prioritizing low population, Maplewood comes **out on top**, and Site 2 landfill comes out as either the worst option, or mid-range. All told, it’s clear that the biases that went into this analysis dictated the opposite outcome, and are quite questionable.

Adjusting DEP’s weighting easily changes the conclusion, even without questioning the methodology of DEP’s scoring system or any of the scores. In the revised version below, we put the highest weight on affecting the fewest people (40% to population density), another 40% on race and class demographics of who is impacted, and 10% each on remaining landfill capacity and on transportation distance.
Figure 5-3: Revised Table giving Population Density 40% weight and Race and Class 40% weight

<table>
<thead>
<tr>
<th>Landfills w/Rail Service</th>
<th>Criteria 1 Scores</th>
<th>Criteria 2 Scores</th>
<th>Criteria 3 Scores</th>
<th>Criteria 4 Scores</th>
<th>Criteria 5 Scores</th>
<th>Criteria 6 Scores</th>
<th>Criteria 7 Scores</th>
<th>Criteria 8 Scores</th>
<th>Criteria 9 Scores</th>
<th>WEIGHTED SCORE</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery County - Site 2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>Maplewood - Amelia</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td></td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>King George</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Atlantic Waste</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>Tunnel Hill Partners</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2.80</td>
<td></td>
</tr>
</tbody>
</table>

Note: on class, all three measures have the same 1-5 scores for the five landfill options, so the choice of poverty rate over median income or housing value has no impact on the result. On race, choosing percent white is the same as saying “percent people of color” and is the most robust way to summarize impact by race.

For a more thorough evaluation of 42 landfill options with additional metrics and explicit exclusion and inclusion criteria to assure a better outcome, see Chapter 7.
Chapter 6: Site 2 Landfill

A. Potential for Water Contamination

The county has land reserved for a future, already-permitted, landfill in Dickerson adjacent to the incinerator. This land is part of the county’s Agricultural Reserve and is being productively farmed.

The county’s Agricultural Reserve, including this potential landfill site, sits on a federally designated sole source aquifer that is part of the Piedmont aquifer system. Constructing a landfill at Site 2 would place this sole source aquifer at risk. The sole source aquifer in this area is characterized by fractured rock, making groundwater monitoring, rapid detection, and containment of possible contamination more complex.

Nationally recognized as the “Poolesville Area Aquifer System,” it is the only source of drinking water for all residents and farms of the Agricultural Reserve west of Route 28. According to the U.S. Environmental Protection Agency (EPA), no other economically feasible water source could be made available to this region and “if the aquifer system were contaminated would create a significant hazard to public health.”

EPA further states:

“While the quality of the area’s ground water is considered to be good, it is vulnerable to contamination due to the relatively thin soil cover and rapid movement of ground water in fractured rock, coupled with increasing development and other land uses. Thin soil cover may allow contaminants to be rapidly introduced into the ground water with minimal assimilation into the soil. Rapid movement of ground water through fractured rock can allow contaminants to spread quickly, once introduced. Clean up of contaminated fractured aquifers is usually difficult to achieve and an expensive, long term effort. The designated area is underlain primarily by a fractured nonmarine sedimentary rock aquifer system, with some localized diabase intrusions.”

“The quality of ground water underlying the Poolesville area is generally good, but both the relatively thin soil cover and rapid movement of ground water in fractured rock reduce the capacity for contaminant attenuation, making the aquifer vulnerable to contaminates from point and nonpoint sources.” (emphasis added)

Contamination of the aquifer would make the area uninhabitable. The water table in this area is quite high and the potential for contamination and then migration of leachate is great. Trash would not actually be landfilled but rather mounded to hundreds of feet in the air. At the direction of MDE, GenOn is currently removing five million tons of coal ash because a recent investigation found groundwater contamination due to ash leakage.

The location is also bordered by Broad Run Creek and another unnamed stream which run into the nearby Potomac River thus posing likely run-off and groundwater contamination hazards which could threaten the water supply for much of the Washington, DC area. The intake pipe for the DC metropolitan area is located down-river of the Site 2 location.

A Potomac River Commission report states that climate change may cause well yields and stream flows to decrease considerably.206 The Site 2 landfill may eliminate groundwater recharge over a 120-acre area due to the impermeable liner and cap. This could affect wells and streams throughout this part of Montgomery County, exacerbating the impact of climate change on flows and well yield.

Site 2 is currently being productively farmed. This uncontaminated 820 acres will become more and more valuable in the coming decades as a source for local food production as production in the West and Midwest declines due to rising temperatures and reduced rainfall.

There are good reasons not to develop a new landfill within the county, whether at Site 2 or elsewhere.

B. Reasons not to develop a new landfill within the county, at Site 2 or elsewhere

Cost

DEP and HDR estimate that development of the Site 2 Landfill would have the highest capital cost, taking five years and $107 million to build. This does not include the inevitable years of costly litigation as the community resists this development. While “community opposition” and “potential for delay in development due to opposition” are recognized as “cons” in HDR’s Task 9 report, neither DEP nor HDR have disclosed how the risk of community opposition and potential litigation were taken into account in estimating costs or delays, particularly in light of the history of community resistance to – and litigation about – siting other noxious facilities in Dickerson.207 HDR also does not quantify or include “additional capital costs” that HDR identifies, such as “costs to develop access road and material management, possible costs associated with a [landfill gas] system, and potential for additional costs related to permitting, or site studies if required.”208 A landfill gas collection and management system at a modern landfill will be required. It is not merely a “possible” cost. Other costs to factor in are bond debt and interest, closure costs, closure and post-closure bonds, and any long-term liability associated with contaminating the aquifer (such as having to dig up and relocate millions of tons of waste upon a finding of contamination, as MDE is requiring of GenOn’s Westland coal ash landfill).

As Site 2 would be expected to have a 20- to 30-year receiving capacity, it is further hard to justify the capital expenditures of its development for such a short-term solution. The Maplewood landfill in Virginia has, for example, a 150-year remaining capacity.

Leakage

The U.S. Environmental Protection Agency has stated multiple times in the Federal Register that all landfill liners eventually leak. "First, even the best liner and leachate collection systems will ultimately fail due to natural deterioration, and recent improvements in [municipal solid waste landfill] containment technologies suggest that releases may be delayed by many decades at some landfills."209 And “when it does, leachate will migrate out of the facility.”210 Landfills can start leaking from inception, and by the time a liner system is 20 years old, it is quite likely to be leaking.211 EPA recognizes that landfill liner systems can fail within 10-20 years.212

207 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020, p.84. drive.google.com/file/d/1MqFlk7Ylr8Obbze20h9N6zGk0vk40x/view
208 Id. at Table 14-2.
210 Hazardous Waste Management System; Standards Applicable to Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities; and EPA Administered Permit Programs, 47 Fed. Reg. 32274 (July 26, 1982) at 32284-32285. tile.loc.gov/storage-services/service/lifedreg/fr047/fr047143/fr047143.pdf “A liner is a barrier technology that prevents or greatly restricts migration of liquids into the ground. No liner, however, can keep all liquids out of the ground for all time. Eventually liners will either degrade, tear, or crack and will allow liquids to migrate out of the unit.... Some have argued that liners are devices that provide a perpetual seal against any migration from a waste management unit. EPA has concluded that the more reasonable assumption, based on what is known about the pressures placed on liners over time, is that any liner will begin to leak eventually.”
212 Hazardous Waste Management System; Standards Applicable to Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities and EPA Administered Permit Programs, 46 Fed. Reg. 11126 (February 5, 1981) at 11128. tile.loc.gov/storage-services/service/lifedreg/fr046/fr046024/fr046024.pdf “Manmade impermeable materials that might be used for liners or covers (e.g., membrane liners or other materials) are subject to eventual deterioration, and although this might not occur for 10, 20 or more years, it eventually occurs and, when it does, leachate will migrate out of the facility.”
Existing vs. New Sites

For thousands of communities in the U.S., including at least two existing landfill sites in Montgomery County, contamination is a long-term reality. Given that all landfills eventually leak, constructing landfills at new sites, knowingly condemning new sites to contamination is simply unethical.

It’s important not to develop and contaminate new sites when existing contaminated sites are routinely expanded and can be used without introducing groundwater contamination to additional communities. Rather, the only ethical response is to drastically curtail waste, limiting the need to expand existing landfills. Where landfills must be used, they should be in low population areas preferably with low rainfall.

Figure 6-2: Landfill Liner System

Exporting from urban areas is normal

With rare exceptions, cities do not have landfills within their borders. Washington, DC exports to facilities in Virginia. New York City and Philadelphia export to large numbers of facilities outside of their borders, and even outside of the state. Many suburban counties are also no longer in a position to host landfills because of growing populations and land use conflicts.

Exporting to permitted landfills in more rural areas is the norm.\(^\text{213}\) Connecticut is facing the closure of its largest incinerator, has insufficient landfill capacity, and will soon export much of its waste to Pennsylvania landfills while aggressively working to reduce that waste through Zero Waste efforts.\(^\text{214}\) Choosing remote, well-managed existing sites with very low surrounding population density will have the lowest health and environmental impact.

\(^{213}\) Sean Kilcarr, “Far and Away: A Look at Long-Haul Waste Transport,” Waste 360, Jan 20, 2012. www.waste360.com/long-haul/far-and-away-look-long-haul-waste-transport \("Mital says those promising trends include steady growth in solid waste generation; the shift in disposal to fewer, larger landfills in more remote, rural areas; the need to transport solid waste over increasingly greater distances; the expectation that trucking will remain the preferred method of long-haul transportation; and the growing propensity for waste companies and municipalities to outsource their long-haul equipment and transportation services to carriers like MBI."

\(^{214}\) Connecticut Coalition for Sustainable Materials Management, Department of Energy and Environmental Protection. portal.ct.gov/DEEP/Waste-Management-and-Disposal/CCSMM/ Find a compilation of many excellent presentations on Zero Waste measures the state is considering here: docs.google.com/spreadsheets/d/11_lTv80EVuiiOjjN3BpGdYcALycM63GNr2L67s3N9k/
Invest in Reducing Harm to Landfill Communities

Instead of devoting resources to new landfill development, the county should devote more resources in Zero Waste strategies to reduce harm to landfill communities. Using existing landfills and working aggressively to reduce the amount and toxicity of what the county sends to landfill is the only just strategy. This includes (in priority order):

1. For as long as incineration continues, stop “beneficially using” incinerator ash as landfill cover or to build internal roads in the landfill, so that exposure of the landfill community to toxic ash dust is minimized. Regardless of Maryland law, stop counting incinerator ash use in the county’s calculation of its recycling and diversion percentages.*

 Note that this was an issue in Baltimore, causing the Maryland Department of the Environment to step in and order the city to stop using incinerator ash as landfill cover because it was blowing into the community:

 We note that your Compliance Action Plan did address “inadequate cover” or “exposed wastes.” Our recent inspection shows that these are still unabated violations and have been a perennial problem. Wastes sitting uncovered on the surface of the landfill can easily become airborne and therefore also affect the litter control issue. Landfill personnel have related that wastes become exposed as the ash washes or is blown away; if this is a valid causative factor, then it’s another reason why ash should not be used as an [alternative daily cover material].

2. As soon as legally possible, stop using Old Dominion Landfill and switch to using a landfill in a less populated community which does not violate Title VI of the Civil Rights Act.*

3. As soon as possible, end incineration since sending ash to a landfill is far more damaging to public health and the environment than sending unburned trash.

4. Remove food scraps and yard waste from the waste stream through source separation of organic materials and aerobic composting, to minimize gas generation and odors at the landfill.

5. Invest in material recovery and biological treatment (MRBT) steps prior to landfilling residuals to further reduce the volume and tonnage of residuals to be landfilled, minimize transportation costs, and minimize gas and odor generation at the landfill.

6. Focus on other Zero Waste strategies, prioritizing Unit-Based Pricing (a.k.a. Pay as You Throw) to dramatically reduce waste generation.

* It may not be possible to change the ash handling or choice of landfill for the ash without ending the contract with Republic. Ending the Republic contract may not be possible until ending the incineration contract, making steps 1 and 2 contingent on step 3.

Chapter 7: A Better Way to Choose the Best Landfill

HDR’s Task 9 report to the County outlines 29 landfills the county could use, including some as far as Ohio, Kentucky, and Georgia.²¹⁶ DEP provided an evaluation of just four landfills plus the potential Site 2 Landfill and made the case for Site 2, as discussed in Chapters 5 and 6.

We added 13 landfills in southcentral and southwestern Pennsylvania to the list of 29 evaluated by HDR, and applied our own exclusion and inclusion screening criteria to filter down the 42 landfills to five of the best ones to consider.

A. Exclusion criteria

To avoid violating Title VI of the Civil Rights Act, we started by removing from consideration landfills in communities with a Black population of over 30% within five miles of the landfill. In the sample involved, this removed the same landfills as if we had more broadly defined it to exclude landfills in communities where people of color (including white people of Hispanic origin) are significantly overrepresented compared to the national average. This removed 8 of the 31 landfills from consideration, including one of four considered by DEP, and two of the top seven considered by HDR.

We then removed another 12 due to high populations (20,000 or more within five miles), then another three where the local population had a median household income under $35,000.

Three additional landfills were screened out due to their public (county) ownership, as publicly-owned landfills rarely accept outside waste. Many others never were considered by HDR or DEP, probably for this reason. Not a single Maryland landfill was considered by HDR or DEP, as all but one in the state are publicly-owned. Like Montgomery County does with the incinerator, other counties save their landfills for their own use. While some of the publicly-owned landfills considered by HDR accept out-of-county waste, some (like Loudoun County, VA) do not. We screened these out to mitigate the uncertainty that a county-owned landfill could close its doors at any moment should the waste market tighten and the county needs the landfill space for its own use.

Three more (both Tunnel Hill landfills in Ohio, and Big Run Landfill in Kentucky) were excluded due to public opposition. With more research, this could be a screening criterion that rules out a few others, though ongoing opposition to older landfills is unusual, especially in less populated areas, unless a major expansion generates new community attention. In the spirit of solidarity, we feel it would be appropriate for the county not to pursue using a landfill where community members are actively engaged in trying to stop an expansion or to close it. Such opposition also creates uncertainty, as community groups sometimes succeed at closing landfills, stopping their expansion, or setting limits on waste imports.

Three other exclusion criteria were applied, but did not remove any further landfills from consideration, as they overlap with previously mentioned criteria. These are ones in a tight waste market (particularly where the landfill will be needed once older incinerators in the area close over the next decade), one where the distance if quite excessive (southern Georgia), and one new landfill in North Carolina where there is no gas collection system yet in place.

²¹⁶ HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020, p.84. drive.google.com/file/d/1MqFlk7JYlr0bbze20hi9NzGk0v40x/view
Table 7-1: Landfill Options for Montgomery County

[Includes all 29 landfills considered in HDR Task 9 report plus 13 others in southcentral and southwest Pennsylvania.]

<table>
<thead>
<tr>
<th>Landfill Name</th>
<th>Rail Miles</th>
<th>Road Miles</th>
<th>City</th>
<th>County</th>
<th>St</th>
<th>Population (5 mi)</th>
<th>Black % (5 mi)</th>
<th>White % (5 mi)</th>
<th>Median household income (5 mi)</th>
<th>Owner</th>
<th>Operator</th>
<th>Landfill Closure Year</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor County Landfill</td>
<td>856</td>
<td>748</td>
<td>Mauk</td>
<td>Taylor</td>
<td>GA</td>
<td>1,070</td>
<td>16%</td>
<td>87%</td>
<td>$34k</td>
<td>Waste Industries</td>
<td></td>
<td>2077</td>
<td>c, f</td>
</tr>
<tr>
<td>Big Run Landfill</td>
<td>414</td>
<td></td>
<td>Ashland</td>
<td>Boyd</td>
<td>KY</td>
<td>14,000</td>
<td>5%</td>
<td>91%</td>
<td>$56k</td>
<td>Rumpke Waste and Recycling</td>
<td></td>
<td>2033</td>
<td>g</td>
</tr>
<tr>
<td>Charlotte Motor</td>
<td>400</td>
<td></td>
<td>Concord</td>
<td>Cabarrus</td>
<td>NC</td>
<td>61,000</td>
<td>24%</td>
<td>61%</td>
<td>$73k</td>
<td>Republic Services</td>
<td></td>
<td>2034</td>
<td>b</td>
</tr>
<tr>
<td>Speedway Landfill</td>
<td>250</td>
<td></td>
<td>Aulander</td>
<td>Bertie</td>
<td>NC</td>
<td>1,295</td>
<td>75%</td>
<td>21%</td>
<td>$33k</td>
<td>Republic Services</td>
<td></td>
<td>2042</td>
<td>a, c</td>
</tr>
<tr>
<td>East Carolina Regional Landfill</td>
<td>423</td>
<td></td>
<td>Lenoir</td>
<td>Caldwell</td>
<td>NC</td>
<td>15,000</td>
<td>19%</td>
<td>70%</td>
<td>$29k</td>
<td>Republic Services</td>
<td></td>
<td>2039</td>
<td>c</td>
</tr>
<tr>
<td>Foothills Environmental Landfill</td>
<td>335</td>
<td></td>
<td>Randleman</td>
<td>Randolph</td>
<td>NC</td>
<td>25,067</td>
<td>10%</td>
<td>65%</td>
<td>$45k</td>
<td>Randolph County, NC</td>
<td>Waste Management</td>
<td></td>
<td>b, d, g, h</td>
</tr>
<tr>
<td>Rowan County Landfill</td>
<td>381</td>
<td></td>
<td>Woodleaf</td>
<td>Rowan</td>
<td>NC</td>
<td>7,379</td>
<td>15%</td>
<td>75%</td>
<td>$50k</td>
<td>Rowan County, NC</td>
<td></td>
<td>2082</td>
<td>d</td>
</tr>
<tr>
<td>South Wake Landfill</td>
<td>300</td>
<td></td>
<td>Apex</td>
<td>Wake</td>
<td>NC</td>
<td>48,000</td>
<td>12%</td>
<td>73%</td>
<td>$100k</td>
<td>Wake County, NC</td>
<td></td>
<td>2040</td>
<td>b, d</td>
</tr>
<tr>
<td>Upper Piedmont Regional Landfill</td>
<td>260</td>
<td></td>
<td>Rougemont</td>
<td>Person</td>
<td>NC</td>
<td>3,872</td>
<td>24%</td>
<td>72%</td>
<td>$50k</td>
<td>Republic Services</td>
<td></td>
<td>2057</td>
<td>d, b</td>
</tr>
<tr>
<td>Uwharrie Env't Regional Landfill</td>
<td>384</td>
<td></td>
<td>Mount Gilead</td>
<td>Montgomery</td>
<td>NC</td>
<td>4,549</td>
<td>19%</td>
<td>70%</td>
<td>$42k</td>
<td>Republic Services</td>
<td></td>
<td>2067</td>
<td>c</td>
</tr>
<tr>
<td>Gloucester County Solid Waste Complex</td>
<td>133</td>
<td></td>
<td>Swedesboro</td>
<td>Gloucester</td>
<td>NJ</td>
<td>20,000</td>
<td>8%</td>
<td>81%</td>
<td>$128k</td>
<td>Gloucester County Improvement Authority, NJ</td>
<td></td>
<td>2050</td>
<td>b, d, e</td>
</tr>
<tr>
<td>Sunny Farms Landfill</td>
<td>511</td>
<td>443</td>
<td>Fostoria</td>
<td>Seneca</td>
<td>OH</td>
<td>3,091</td>
<td>3%</td>
<td>89%</td>
<td>$60k</td>
<td>Tunnel Hill Partners</td>
<td></td>
<td>2039</td>
<td>g</td>
</tr>
<tr>
<td>Tunnel Hill Reclamation Landfill</td>
<td>615</td>
<td>350</td>
<td>New Lexington</td>
<td>Perry</td>
<td>OH</td>
<td>6,285</td>
<td>0%</td>
<td>98%</td>
<td>$39k</td>
<td>Tunnel Hill Partners</td>
<td></td>
<td>2023</td>
<td>g</td>
</tr>
<tr>
<td>Arden Landfill</td>
<td>225</td>
<td></td>
<td>Washington</td>
<td>Washington</td>
<td>PA</td>
<td>36,000</td>
<td>8%</td>
<td>88%</td>
<td>$53k</td>
<td>Waste Management</td>
<td></td>
<td>2081</td>
<td>b</td>
</tr>
<tr>
<td>Blue Ridge Landfill</td>
<td>81</td>
<td></td>
<td>Scotland</td>
<td>Franklin</td>
<td>PA</td>
<td>14,000</td>
<td>3%</td>
<td>92%</td>
<td>$66k</td>
<td>Waste Connections</td>
<td></td>
<td>2031</td>
<td>c</td>
</tr>
<tr>
<td>Chestnut Valley Landfill</td>
<td>184</td>
<td></td>
<td>McClellandtown</td>
<td>Fayette</td>
<td>PA</td>
<td>10,000</td>
<td>5%</td>
<td>92%</td>
<td>$32k</td>
<td>GFL Environmental</td>
<td></td>
<td>2024</td>
<td>c</td>
</tr>
<tr>
<td>Evergreen Landfill</td>
<td>195</td>
<td></td>
<td>Blairsville</td>
<td>Indiana</td>
<td>PA</td>
<td>7,859</td>
<td>2%</td>
<td>96%</td>
<td>$51k</td>
<td>Waste Management</td>
<td>Pellegrene Construction</td>
<td>2077</td>
<td>b</td>
</tr>
<tr>
<td>Greenridge Reclamation Landfill</td>
<td>188</td>
<td></td>
<td>Scottsdale</td>
<td>Westmoreland</td>
<td>PA</td>
<td>22,000</td>
<td>1%</td>
<td>97%</td>
<td>$52k</td>
<td>Republic Services</td>
<td></td>
<td>2026</td>
<td>b</td>
</tr>
<tr>
<td>Imperial Sanitary Landfill</td>
<td>243</td>
<td></td>
<td>Imperial</td>
<td>Allegheny</td>
<td>PA</td>
<td>13,000</td>
<td>2%</td>
<td>94%</td>
<td>$70k</td>
<td>Republic Services</td>
<td></td>
<td>2044</td>
<td>c</td>
</tr>
<tr>
<td>J.J. Brunner Landfill</td>
<td>244</td>
<td></td>
<td>Zelienopole</td>
<td>Beaver</td>
<td>PA</td>
<td>25,000</td>
<td>1%</td>
<td>95%</td>
<td>$87k</td>
<td>Joseph J. Brunner, Inc.</td>
<td></td>
<td>2030</td>
<td>b</td>
</tr>
<tr>
<td>Kelly Run Sanitation Landfill</td>
<td>214</td>
<td></td>
<td>Elizabeth</td>
<td>Allegheny</td>
<td>PA</td>
<td>20,000</td>
<td>14%</td>
<td>84%</td>
<td>$53k</td>
<td>Waste Management</td>
<td></td>
<td>2029</td>
<td>b</td>
</tr>
<tr>
<td>Laurel Highlands Landfill</td>
<td>160</td>
<td></td>
<td>Johnstown</td>
<td>Cambria</td>
<td>PA</td>
<td>3,300</td>
<td>0%</td>
<td>98%</td>
<td>$63k</td>
<td>Waste Management</td>
<td></td>
<td>2124</td>
<td>b</td>
</tr>
<tr>
<td>Monroeville Landfill</td>
<td>214</td>
<td></td>
<td>Monroeville</td>
<td>Allegheny</td>
<td>PA</td>
<td>81,000</td>
<td>17%</td>
<td>77%</td>
<td>$52k</td>
<td>Waste Management</td>
<td></td>
<td>2045</td>
<td>b</td>
</tr>
<tr>
<td>Mostoller Landfill</td>
<td>159</td>
<td></td>
<td>Somerset</td>
<td>Somerset</td>
<td>PA</td>
<td>5,240</td>
<td>10%</td>
<td>86%</td>
<td>$50k</td>
<td>Waste Management</td>
<td></td>
<td>2056</td>
<td>b</td>
</tr>
<tr>
<td>Mountain View Reclamation Landfill</td>
<td>64</td>
<td></td>
<td>Greencastle</td>
<td>Franklin</td>
<td>PA</td>
<td>8,409</td>
<td>2%</td>
<td>94%</td>
<td>$73k</td>
<td>Waste Management</td>
<td></td>
<td>2057</td>
<td>b</td>
</tr>
<tr>
<td>Sandy Run Landfill</td>
<td>117</td>
<td></td>
<td>Hopewell</td>
<td>Bedford</td>
<td>PA</td>
<td>1,848</td>
<td>0%</td>
<td>98%</td>
<td>$41k</td>
<td>GFL Environmental</td>
<td></td>
<td>2130</td>
<td>b</td>
</tr>
<tr>
<td>South Hills Landfill</td>
<td>218</td>
<td></td>
<td>Library</td>
<td>Allegheny</td>
<td>PA</td>
<td>40,000</td>
<td>2%</td>
<td>95%</td>
<td>$87k</td>
<td>Waste Management</td>
<td></td>
<td>2109</td>
<td>b</td>
</tr>
<tr>
<td>Southern Alleghenies Landfill</td>
<td>152</td>
<td></td>
<td>Davidsville</td>
<td>Somerset</td>
<td>PA</td>
<td>15,000</td>
<td>0%</td>
<td>97%</td>
<td>$51k</td>
<td>GFL Environmental</td>
<td></td>
<td>2091</td>
<td>b</td>
</tr>
<tr>
<td>Valley Landfill</td>
<td>205</td>
<td></td>
<td>Irwin</td>
<td>Westmoreland</td>
<td>PA</td>
<td>33,000</td>
<td>1%</td>
<td>96%</td>
<td>$88k</td>
<td>Waste Management</td>
<td></td>
<td>2065</td>
<td>b</td>
</tr>
<tr>
<td>Landfill Name</td>
<td>Rail Miles</td>
<td>Road Miles</td>
<td>City</td>
<td>County</td>
<td>St</td>
<td>Population (5 mi)</td>
<td>Black % (5 mi)</td>
<td>White % (5 mi)</td>
<td>Median household income (5 mi)</td>
<td>Owner</td>
<td>Operator</td>
<td>Landfill Closure Year</td>
<td>Exclusion criteria</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------</td>
<td>----</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Westmoreland Sanitary Landfill</td>
<td>206</td>
<td></td>
<td>Belle Vernon</td>
<td>Westmoreland</td>
<td>PA</td>
<td>36,000</td>
<td>7%</td>
<td>89%</td>
<td>$51k</td>
<td>Noble Environmental</td>
<td>Westmoreland Waste LLC</td>
<td>2055</td>
<td>b</td>
</tr>
<tr>
<td>Lee County Landfill</td>
<td>*</td>
<td>440</td>
<td>Bishopville</td>
<td>Lee</td>
<td>SC</td>
<td>7,165</td>
<td>72%</td>
<td>25%</td>
<td>$35k</td>
<td>Republic Services</td>
<td></td>
<td>2057</td>
<td>a, c</td>
</tr>
<tr>
<td>Atlantic Waste Disposal</td>
<td>170</td>
<td>190</td>
<td>Waverly</td>
<td>Sussex</td>
<td>VA</td>
<td>3,266</td>
<td>68%</td>
<td>29%</td>
<td>$56k</td>
<td>Waste Management</td>
<td></td>
<td>2093</td>
<td>a</td>
</tr>
<tr>
<td>Big Bethel Landfill</td>
<td>170</td>
<td></td>
<td>Hampton</td>
<td>Hampton City</td>
<td>VA</td>
<td>120,000</td>
<td>37%</td>
<td>50%</td>
<td>$62k</td>
<td>Waste Management</td>
<td></td>
<td>2098</td>
<td>a, b, e</td>
</tr>
<tr>
<td>Brunswick Waste Management Facility</td>
<td>*</td>
<td>194</td>
<td>Lawrenceville</td>
<td>Brunswick</td>
<td>VA</td>
<td>5,782</td>
<td>67%</td>
<td>29%</td>
<td>$23k</td>
<td>Republic Services</td>
<td></td>
<td>2111</td>
<td>a, c</td>
</tr>
<tr>
<td>Charles City County Sanitary Landfill</td>
<td>145</td>
<td></td>
<td>Charles City</td>
<td>Charles City</td>
<td>VA</td>
<td>3,887</td>
<td>32%</td>
<td>54%</td>
<td>$57k</td>
<td>Waste Management</td>
<td></td>
<td>2055</td>
<td>a</td>
</tr>
<tr>
<td>King George Landfill</td>
<td>83</td>
<td>82</td>
<td>King George</td>
<td>King George</td>
<td>VA</td>
<td>5,497</td>
<td>13%</td>
<td>80%</td>
<td>$81k</td>
<td>King George County, VA</td>
<td>Waste Management</td>
<td>2041</td>
<td>d, e</td>
</tr>
<tr>
<td>Loudoun County Solid Waste Mgmt Facility</td>
<td>43</td>
<td></td>
<td>Leesburg</td>
<td>Loudoun</td>
<td>VA</td>
<td>5,815</td>
<td>3%</td>
<td>82%</td>
<td>$52k</td>
<td>Loudoun County Board of Supervisors, VA</td>
<td></td>
<td>2057</td>
<td>d</td>
</tr>
<tr>
<td>Maplewood Recycling & Waste Disposal</td>
<td>233</td>
<td>167</td>
<td>Jetersville</td>
<td>Amelia</td>
<td>VA</td>
<td>2,335</td>
<td>21%</td>
<td>76%</td>
<td>$58k</td>
<td>Waste Management</td>
<td></td>
<td>2167</td>
<td></td>
</tr>
<tr>
<td>Middle Peninsula Landfill</td>
<td>160</td>
<td></td>
<td>Saluda</td>
<td>Gloucester</td>
<td>VA</td>
<td>2,958</td>
<td>9%</td>
<td>86%</td>
<td>$75k</td>
<td>Gloucester County, VA</td>
<td>Waste Management</td>
<td>2070</td>
<td>d</td>
</tr>
<tr>
<td>Old Dominion Landfill</td>
<td>130</td>
<td>139</td>
<td>Richmond</td>
<td>Henrico</td>
<td>VA</td>
<td>81,000</td>
<td>72%</td>
<td>23%</td>
<td>$39k</td>
<td>Republic Services</td>
<td></td>
<td>2048</td>
<td>a, b</td>
</tr>
<tr>
<td>Shoosmith Sanitary Landfill</td>
<td>180</td>
<td></td>
<td>Chester</td>
<td>Chesterfield</td>
<td>VA</td>
<td>38,000</td>
<td>19%</td>
<td>71%</td>
<td>$78k</td>
<td>Shoosmith Brothers</td>
<td></td>
<td>2070</td>
<td></td>
</tr>
<tr>
<td>SPSA-Regional Landfill</td>
<td>215</td>
<td></td>
<td>Suffolk</td>
<td>Suffolk City</td>
<td>VA</td>
<td>13,000</td>
<td>49%</td>
<td>46%</td>
<td>$67k</td>
<td>Southeastern Public Service Authority, VA</td>
<td></td>
<td></td>
<td>a, d, e</td>
</tr>
</tbody>
</table>

a Black population within 5 miles over 30%.
b Population within 5 miles over 20,000.
c Population within 5 miles under $35,000 median household income.
d Publicly-owned (county-owned landfills generally do not take out-of-county waste, which is why landfills in Maryland and most in Northern Virginia have not even been considered).
e Landfill space needed for when aging incinerator(s) nearby close (tight waste market projected over the next decade).
f Excessive distance.
g Public opposition (note that Big Run Landfill in KY is no longer an option because community opposition secured a restriction where only waste from within 75 miles is allowed to be accepted).
h No landfill gas collection system in place (yet).

* Served by CSX rail, but rail transport distance unknown.

Sources:
- HDR, “Task 9: Develop Options for Collection and Disposal of What’s Left” – Final Technical Memorandum #5,” Feb. 2020, Appendix D, Table 1: Landfills by Rail and Road (PDF pp. 135-136). drive.google.com/file/d/1MqF1k7Ylrbo8bbze20hJ9Nx-Gk0vk40x/view
- Google Maps (for road miles from Shady Grove Transfer Station)
- Energy Justice Network Communities Map. www.energyjustice.net/map (for census data from www.justicemap.org and links from landfill names to pages for more information)
- Waste company websites for updated ownership information, including the recent merger of Waste Management, Inc. and Advanced Disposal Systems, and the resulting divestiture of several landfills to GFL Environmental: www.justice.gov/opa/pr/justice-department-requires-waste-management-divest-assets-order-proceed-advanced-disposal
B. Inclusion criteria

Of the twelve landfills remaining in consideration, there are reasons some might be preferred. While transportation distance has not proved to be very relevant to emissions, some of the further ones (such as the two in North Carolina) can be saved for later consideration in case lower tipping fees justify the longer haul. This cuts the list to ten landfills where some would stand out as preferable for any of seven additional reasons: landfill gas management method, rainfall, supporting smaller waste companies, landfill capacity, rail access, environmental track record, and cost.

One of the biggest factors in landfill impacts is the landfill gas management method. Nearly all landfills now collect their gas, but those which burn for energy, particularly with internal combustion engines, are far more polluting than those which flare their gas. There are also concerns with how landfills are managed when operators seek to produce energy by maximizing gas generation, which reduces gas collection efficiency and causes more gas to escape than if the landfill were simply flaring its gas and managing to minimize gas formation and maximize gas collection.217

Lower rainfall reduces emissions at landfills as less water infiltrates the landfill to generate leachate and landfill gas. Three landfills in Pennsylvania (Mountain View, Blue Ridge, and Sandy Run) are in communities that experience the least rainfall of any considered. They cross the threshold into a lower rainfall bracket in the MEBCalc model, which is the reason for the lower impacts modeled. This is more significant than the differences in transportation distances, or between rail and truck transport.

Supporting smaller waste companies is preferable to further enriching waste monopolies such as Waste Management, Inc. and Republic Services, Inc. Blue Ridge Landfill in PA (Waste Connections), Sandy Run Landfill and Southern Alleghenies Landfill in PA (GFL Environmental), and Shoosmith Sanitary Landfill in VA (Shoosmith Brothers) are the four of the remaining 12 that are owned by smaller waste corporations.

Remaining landfill life is one of the criteria DEP was evaluating. It’s useful to the degree that a landfill with a smaller remaining life won’t be expanding, anyway, as landfills continually tend to do. Waste Management’s Laurel Highlands Landfill in PA (2124), GFL Environmental’s Sandy Run Landfill in PA (2130), GFL Environmental’s Southern Alleghenies Landfill in PA (2091), and Waste Management’s Maplewood Landfill in VA (2167) stand out as having the most distant closure years in EPA’s database.218

Years remaining does not tell us all we need to know about available capacity, as landfills are permitted for a certain tonnage per day, which means that landfills with plenty of remaining space may not have enough capacity available to accept more waste within their permit limits. A review of this data that is available from Pennsylvania shows that one of the best landfill options (Blue Ridge) may be at capacity.

A closer look at Sandy Run Landfill found that after a recent change of ownership,219 their average daily volume has substantially increased, reducing the capacity available from 203,200 tons/year to an estimated 73,000 tons/year. In 2019, Montgomery County generated and burned at MCRRF 499,369

217 See links to resources on landfill gas emissions in the top and sidebar at www.energyjustice.net/lfg and recommendations for better landfill management in the Zero Waste Hierarchy at www.energyjustice.net/zerowaste/hierarchy
219 Chestnut Valley Landfill, Sandy Run Landfill, and Southern Alleghenies Landfill were among several landfills that were divested in the course of the merger of Waste Management, Inc. and Advanced Disposal Services, Inc. – all now owned by GFL Environmental. See United States, et. al. v. Waste Management, Inc. and Advanced Disposal Services, Inc. Proposed Final Judgement, U.S. Department of Justice, Appendix A, p.29. www.justice.gov/opa/press-release/file/1330476/download
tons of municipal solid waste and 107,985 tons of construction and demolition waste, totaling 607,354 tons per year of annual capacity needed until tonnage can be cut down with Zero Waste efforts.220

Few landfills can handle nearly 600,000 tons/year on top of their current burden, but some come close. Of course, with serious Zero Waste efforts, Montgomery County’s needs will decrease over time. Many large jurisdictions send waste to a variety of landfills, so the county could use a combination of the better landfill options. Of the Pennsylvania landfills, there are eight landfills with over around 300,000 to 600,000 tons/year capacity available. Four were screened out due to higher populations, but four remain that made it through all of the exclusion criteria.

Table 7-2: Southwestern Pennsylvania Landfills with greatest available annual capacity221

<table>
<thead>
<tr>
<th>Landfill</th>
<th>Extra capacity (tons/year)</th>
<th>Screened out due to higher population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Alleghenies Landfill</td>
<td>598,237</td>
<td></td>
</tr>
<tr>
<td>South Hills Landfill</td>
<td>581,760</td>
<td>X</td>
</tr>
<tr>
<td>Valley Landfill</td>
<td>532,671</td>
<td>X</td>
</tr>
<tr>
<td>Greenridge Reclamation</td>
<td>499,025</td>
<td>X</td>
</tr>
<tr>
<td>Laurel Highlands Landfill</td>
<td>459,223</td>
<td></td>
</tr>
<tr>
<td>Mostoller Landfill</td>
<td>417,681</td>
<td></td>
</tr>
<tr>
<td>Imperial Landfill</td>
<td>388,381</td>
<td></td>
</tr>
<tr>
<td>Westmoreland Sanitary Landfill</td>
<td>290,181</td>
<td>X</td>
</tr>
</tbody>
</table>

Rail access has been a consideration since Montgomery County has long relied on a rail-based system. The matter of trucking vs. rail transport did not turn out to be very significant in the overall emissions picture, however. This is in part because rail usually involves longer trips. However, the emissions of the waste disposal facility itself are so much greater than transportation that transportation mode should be a minor consideration after avoiding incineration (largest factor), reducing waste and unprocessed organics going to landfills (next largest factor), and choosing landfills in areas with better gas management systems and less rainfall. However, if rail is a deciding factor, one landfill remains in consideration that meets the other screening criteria well, and that is Maplewood Landfill in Virginia.

While we have not closely evaluated each landfill’s history of violations, as some states are not as good at putting this data online, it would be prudent for the county to review the compliance history of any landfills in the final steps of consideration.

Cost is, of course, an important consideration. Lower tipping fees are generally available at landfills that are further away, so cost of transportation vs. tipping fees must be balanced. We understand that prices of landfilling, transportation costs included, are competitive with the cost of continuing to incinerate in-county. Issuing a request for proposals, offering a long-term contract, would reveal the actual cost picture better than any recent reports have been able to estimate.

220 Maryland Department of the Environment, “2019 Waste Accepted by Facility” spreadsheet.
Table 7-3: Best Landfill Options for Montgomery County

[Includes the 12 of 42 landfills that survived the exclusion criteria.]

<table>
<thead>
<tr>
<th>Landfill Name</th>
<th>Rail Miles</th>
<th>Road Miles</th>
<th>City</th>
<th>County</th>
<th>St</th>
<th>Owner</th>
<th>Operator</th>
<th>Annual rainfall</th>
<th>Available Capacity (tons/year)</th>
<th>Landfill Closure Year</th>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Piedmont Regional Landfill</td>
<td>260</td>
<td></td>
<td>Rougemont</td>
<td>Person</td>
<td>NC</td>
<td>Republic Services</td>
<td></td>
<td>50</td>
<td></td>
<td>2057</td>
<td>t</td>
</tr>
<tr>
<td>Uwharrie Env'l Regional Landfill</td>
<td>384</td>
<td></td>
<td>Mount Gilead</td>
<td>Montgomery</td>
<td>NC</td>
<td>Republic Services</td>
<td></td>
<td>50</td>
<td></td>
<td>2067</td>
<td>t, u, v</td>
</tr>
<tr>
<td>Blue Ridge Landfill</td>
<td>81</td>
<td></td>
<td>Scotland</td>
<td>Franklin</td>
<td>PA</td>
<td>Waste Connections</td>
<td>Pellegrene Construction</td>
<td>39</td>
<td>0</td>
<td>2031</td>
<td>t, u, v</td>
</tr>
<tr>
<td>Evergreen Landfill</td>
<td>195</td>
<td></td>
<td>Blairsville</td>
<td>Indiana</td>
<td>PA</td>
<td>Waste Management</td>
<td>Republic Services</td>
<td>53</td>
<td>200,506</td>
<td>2077</td>
<td>t</td>
</tr>
<tr>
<td>Imperial Sanitary Landfill</td>
<td>243</td>
<td></td>
<td>Imperial</td>
<td>Allegheny</td>
<td>PA</td>
<td>Republic Services</td>
<td></td>
<td>43</td>
<td>388,381</td>
<td>2044</td>
<td>t, w</td>
</tr>
<tr>
<td>Laurel Highlands Landfill</td>
<td>160</td>
<td></td>
<td>Johnstown</td>
<td>Cambria</td>
<td>PA</td>
<td>Waste Management</td>
<td></td>
<td>53</td>
<td>459,223</td>
<td>2124</td>
<td>t, w</td>
</tr>
<tr>
<td>Mostoller Landfill</td>
<td>159</td>
<td></td>
<td>Somerset</td>
<td>Somerset</td>
<td>PA</td>
<td>Waste Management</td>
<td></td>
<td>51</td>
<td>417,681</td>
<td>2056</td>
<td>w</td>
</tr>
<tr>
<td>Mountain View Reclamation Landfill</td>
<td>64</td>
<td></td>
<td>Greencastle</td>
<td>Franklin</td>
<td>PA</td>
<td>Waste Management</td>
<td></td>
<td>35</td>
<td>237,366</td>
<td>2057</td>
<td>u</td>
</tr>
<tr>
<td>Sandy Run Landfill</td>
<td>117</td>
<td></td>
<td>Hopewell</td>
<td>Bedford</td>
<td>PA</td>
<td>GFL Environmental</td>
<td></td>
<td>40</td>
<td>203,199 (PA DEP) 73,000 (revised est.)</td>
<td>2130</td>
<td>t, u, v, y</td>
</tr>
<tr>
<td>Southern Alleghenies Landfill</td>
<td>152</td>
<td></td>
<td>Davidsville</td>
<td>Somerset</td>
<td>PA</td>
<td>GFL Environmental</td>
<td></td>
<td>56</td>
<td>598,237</td>
<td>2091</td>
<td>t, v, w</td>
</tr>
<tr>
<td>Maplewood Recycling & Waste Disposal</td>
<td>233</td>
<td>167</td>
<td>Jetersville</td>
<td>Amelia</td>
<td>VA</td>
<td>Waste Management</td>
<td></td>
<td>44</td>
<td></td>
<td>2167</td>
<td>w, x</td>
</tr>
<tr>
<td>Shoosmith Sanitary Landfill</td>
<td>180</td>
<td></td>
<td>Chester</td>
<td>Chesterfield</td>
<td>VA</td>
<td>Shoosmith Brothers</td>
<td></td>
<td>47</td>
<td></td>
<td>2070</td>
<td>v</td>
</tr>
</tbody>
</table>

1 Flaring captured landfill gas or injecting into pipelines
2 Lower rainfall
3 Smaller waste company
4 Larger available capacity
5 Rail access
6 Environmental track record
7 Cost (not filled in for lack of recent RFQ/RFP data)

Sources:
- Google Maps (for road miles from Shady Grove Transfer Station)
- Climate Data Online, National Oceanic and Atmospheric Administration (for annual rainfall data). www.ncdc.noaa.gov/cdo-web/datatools/findstation
- Energy Justice Network Communities Map. www.energyjustice.net/map (for census data from [www justicemap.org](http://www.justicemap.org) and links from landfill names to pages for more information)
C. Conclusions

Based on the eight exclusion criteria and seven inclusion criteria available so far, there are six landfills that stand out, one of which (Blue Ridge) seems to be at capacity, leaving these five as the best options in our analysis:

- GFL Environmental’s Sandy Run\(^{222}\) and Southern Allegheny Landfills in PA (the county would need a combination because the closer landfill has limited space)
- Republic Services’ Imperial Sanitary Landfill in PA
- Waste Management’s Maplewood Landfill in VA and Laurel Highlands Landfill in PA

Factoring in cost, more data on available capacity for landfills outside of Pennsylvania, and further research on environmental track records and compliance history could argue for a different assortment of the 13 landfills that survived the exclusion criteria.

All told, there is no shortage of acceptable landfills available. Most cities and larger jurisdiction use a variety of facilities. Waste from the City of Philadelphia went to at least 25 facilities in Pennsylvania over the term of their last 7-year waste contract. Splitting the county’s waste among two or more landfills will likely be necessary as there may not be a single one with sufficient capacity until waste reduction efforts kick in.

\(^{222}\) GFL Environmental’s Sandy Run Landfill is the only one flagged as better environmentally, due to the fact that the host township (Broad Top Township, Bedford County, Pennsylvania) secured a host municipal agreement many years ago which holds this landfill to stricter standards than the state’s landfill regulations, such as their required 24” of a compact sub-base (clay) instead of the state’s 6” requirement.
Chapter 8: Cost of Incineration vs. Landfilling

A. Costs of Managing Wastes Under Incineration Scenario Could be Vastly Understated. It is Difficult to Determine True Future Costs when Estimates Vary Wildly.

DEP considered five main options for managing the county’s waste:

- Option 1: Continue Incineration at MCRRF Through 2026 when contract expires [Status Quo]
- Option 2: Continue Incineration at MCRRF Through 2040
- Option 3: Develop a New Landfill on Site 2 in Montgomery County
- Option 4: Long Haul by Rail from Shady Grove Transfer Station to a Landfill
- Option 5: Long Haul by Truck from Shady Grove Transfer Station to a Landfill

We would add that any option be conducted with state-of-the-art emissions control and best practices. For incineration, this quickly becomes unaffordable and would still be undesirable in any case. For landfill options, this means Material Recovery and Biological Treatment (MRBT) prior to landfilling.

Although the MCRRF trash incinerator (“RRF”) has been presented as a more affordable option because the initial bonds to finance it were paid off by taxpayers in 2016, the incinerator is now aging and in need of significant additional capital investments. These investments are required just to maintain operations (i.e., these costs do not include upgrading to modern emission standards). The County’s contractor, HDR, prepared a report (“Task 9”) estimating the range of capital investment the County would need to spend to operate the incinerator through 2026 or 2040. The estimated costs per ton and capital cost investments were summarized in HDR’s Task 9 Report and are included in Table 8-2.

Estimates provided in the Task 9 Report lack the needed detail and internal consistency required to accurately compare costs between options. For a 2026 closure, HDR estimated total capital costs of between $19 million and $27.4 million. The County’s share was estimated at $11.5 million, annualized at $3.83 million for each of Years 2021, 2022, and 2023. For a 2040 closure scenario, HDR’s estimates ranged between $37 million and $63 million. The report dealt with the uncertainty and wide range of estimates by using the average of the high and low estimates ($49.88 million) to develop capital cost investment estimates for a 2040 closure. About half a year after HDR’s Feb. 2020 report, the county DEP estimated capital costs at $73 million (higher than HDR’s high-end estimate of $63 million). The recent estimate noted that three years lead time would still needed to negotiate a contract or new procurement process to continue use of the MCRRF incinerator and that the outcome of the contract or procurement process would determine final costs for the necessary capital equipment upgrades. DEP’s more recent data estimates a cost of $59.31/ton to continue incinerating through 2040. It is difficult to compare this unit cost to numbers in HDR’s Task 9 Report because it is unclear exactly what costs are included in DEP’s $59.31/ton figure. Does it include reasonable costs for transfer and disposal of ash, non-processible waste, and bypass waste? In reviewing Covanta’s monthly invoice summaries, actual per ton cost for 2020 was $64.36 per ton including the non-processibles and bypass waste.

224 Willie Wainer & Marilu Enciso, Montgomery County Department of Environmental Protection, “What’s Left” spreadsheet in Excel workbook generated July 15, 2020 through September 25, 2020 titled “RRMM Short and Middle Term PrioritiesV15.xlsx”
225 Montgomery County Department of Environmental Protection, “Covanta Waste Management-Monthly Invoice Summaries FY09 through FY20.xlsx”
We can look at recent cost history for trends and insights and to compare projected and actual numbers. HDR’s Task 9 report included an estimate of $11.5 million over three years for capital cost investments to keep the incinerator operating through a 2026 closure date. The fiscal year 2021 operating budget approved by County Council included an additional $12.4 million in cost increases for the RRF program category. According to the Council staff memo accompanying the request, “This cost increase involves several components. The largest part of the increase is capital cost payouts ($5.4 million) which is the County’s contractual cost share for this capital work, and reduced electricity sales revenue ($3.6 million). Other increases include non-processable [sic] waste costs, the operator’s fixed fee increases (based on inflation adjusters), insurance and utilities, and other costs.”

It is unclear from budget documents why the capital cost projections have already surpassed the annual increase estimate reported in the Task 9 report. One factor could be that electricity sales prices in recent years are low due to competition with natural gas. It is unclear whether the 2040 closure cost estimates should also be adjusted upward.

Table 8-1: MCRRF Historical Costs

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Budget ($ millions)</th>
<th>% Change in Budget from Previous FY</th>
<th>MCRRF Throughput (includes MSW and C&D)</th>
<th>Out of County Haul ($ millions) (Includes ash transfer and disposal and transfer and disposal for non-processable and bypass waste)</th>
<th>TOTAL MCRRF Cost + Out of County Haul ($ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>$42.48**</td>
<td></td>
<td>560,919 ^</td>
<td>$10.4</td>
<td>$52.9</td>
</tr>
<tr>
<td>2017</td>
<td>$22.96</td>
<td>(54%)**</td>
<td>580,243 ^</td>
<td>$11.7</td>
<td>$34.7</td>
</tr>
<tr>
<td>2018</td>
<td>$23.90</td>
<td>4%</td>
<td>610,394 ^</td>
<td>$12.3</td>
<td>$36.2</td>
</tr>
<tr>
<td>2019</td>
<td>$26.56</td>
<td>11%</td>
<td>613,354 ^</td>
<td>$12.9</td>
<td>$39.5</td>
</tr>
<tr>
<td>2020</td>
<td>$26.98</td>
<td>1.6%</td>
<td>639,227 *</td>
<td>$13.9</td>
<td>$40.9</td>
</tr>
<tr>
<td>2021</td>
<td>$39.98^229</td>
<td>48%</td>
<td>?</td>
<td>$15.2230</td>
<td>$55.2</td>
</tr>
</tbody>
</table>

^actual231
*projected232
**There is a decrease in MCRRF cost from 2016 to 2017 because the MCRRF bonds were paid off in 2016.

227 FY21 Department of Environmental Protection Recycling and Resource Management Division Budget,” May 7, 2020, p.4.
228 Montgomery County Solid Waste Services FY20 Approved Budget.
229 FY21 Montgomery County Department of Environmental Protection, Recycling and Resource Management Approved Budget.
230 FY21 RRF program cost calculated based on FY20 cost of $26.98 + $12.4M increase in FY21
231 Id. (FY21 out of county haul cost estimated based on FY20 cost plus FY21 increase ($13.9M + $1.293M increase))
232 Actual tonnage data from Maryland Department of the Environment “Waste Accepted by Facility” spreadsheets. Note that the tonnages reported to MDE differ significantly from the county’s numbers, available in T&E Committee Staff Packet for FY19 Operating Budget for Solid Waste Services, p.3.
233 T&E Committee Staff Packet for FY20 Operating Budget for Solid Waste Services, p.4.
Figure 8-1: Covanta’s Increasing Cost to County

The annual totals of Covanta’s monthly invoices since bonds were paid off in 2016 show that the “Covanta amount” in the county’s books is increasing yearly, and shown in Fig. 8-1.233

Table 8-2: Annual Cost, Tonnage and Cost per Ton

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Expenses</th>
<th>Tons Processed</th>
<th>Cost per Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$42,134,908</td>
<td>621,822</td>
<td>$67.76</td>
</tr>
<tr>
<td>2007</td>
<td>$38,226,440</td>
<td>593,495</td>
<td>$64.41</td>
</tr>
<tr>
<td>2008</td>
<td>$32,828,184</td>
<td>587,269</td>
<td>$55.90</td>
</tr>
<tr>
<td>2009</td>
<td>$31,676,183</td>
<td>537,115</td>
<td>$58.97</td>
</tr>
<tr>
<td>2010</td>
<td>$36,119,506</td>
<td>535,097</td>
<td>$67.50</td>
</tr>
<tr>
<td>2011</td>
<td>$38,939,441</td>
<td>562,962</td>
<td>$69.17</td>
</tr>
<tr>
<td>2012</td>
<td>$38,557,823</td>
<td>544,860</td>
<td>$70.77</td>
</tr>
<tr>
<td>2013</td>
<td>$43,712,701</td>
<td>543,383</td>
<td>$80.45</td>
</tr>
<tr>
<td>2014</td>
<td>$39,099,884</td>
<td>581,186</td>
<td>$67.28</td>
</tr>
<tr>
<td>2015</td>
<td>$45,505,642</td>
<td>538,504</td>
<td>$84.50</td>
</tr>
<tr>
<td>2016</td>
<td>$37,653,602</td>
<td>613,439</td>
<td>$61.38</td>
</tr>
<tr>
<td>2017</td>
<td>$22,881,034</td>
<td>523,559</td>
<td>$43.70</td>
</tr>
<tr>
<td>2018</td>
<td>$26,373,311</td>
<td>593,012</td>
<td>$44.47</td>
</tr>
<tr>
<td>2019</td>
<td>$30,000,681</td>
<td>631,542</td>
<td>$47.50</td>
</tr>
<tr>
<td>2020</td>
<td>$34,990,511</td>
<td>543,708</td>
<td>$64.35</td>
</tr>
</tbody>
</table>

It’s not just the overall cost that is rising, but the cost per ton incinerated is also rising back to pre-2016 levels.234

233 Montgomery County Department of Environmental Protection, “Covanta Waste Management-Monthly Invoice Summaries FY09 through FY20.xlsx”

234 Id. plus Monthly Invoice Summaries for FY 2004-2008.
B. Cost Projections

Assumptions, Unknowns, and Omissions Make it Difficult to Determine True Per Ton Costs of Continuing Incineration

The HDR cost projections for the incinerator’s operation through 2040 include questionable assumptions for steady electricity sales revenue, Tier 1 renewable energy credits (RECs), stable processing costs for ash transfer and disposal, and for out-of-county hauling of non-processible and by-pass waste. Over the 2040 closure projection, it is likely that some of these costs will fluctuate and it is possible that some will increase. In the year since the release of the Task 9 report, there have been apparent increases to net costs associated with decreased electricity sales revenue, capital improvement costs at the incinerator, and costs for increased out-of-county hauling. While electricity rates can be expected to fluctuate, the trends in net costs overall have leaned toward increases, and for planning purposes conservative estimates are warranted. The projections also omit pollution control enhancements that would bring the incinerator’s emissions up to modern standards.

As Waste is Reduced, Incineration Will be Less Efficient & Costlier per Ton

The costs of operating the incinerator will, for several reasons, not decrease in line with the decreased volume of waste. First, **the bulk of the incinerator’s costs are fixed costs and do not depend on the volume processed**. Still, performance and efficiency are impacted by the amount of trash processed by the incinerator. Operating the boilers at less than 75 percent load can impact emissions and boiler performance.\(^{235}\) As throughput decreases, the County could decide to manage one boiler on standby, effectively performing as an expensive insurance policy. Reduced throughput also reduces production of marketable energy, thereby reducing the offsetting revenues and increasing per ton costs. The cost estimates do not quantify cost and revenue impacts from reduced boiler usage options, although the Task 9 report notes that “overall efficiency is optimized with all three boilers at full load.”\(^{236}\) In contrast, the cost of using a landfill will be directly related to the volume of residuals. As the volume of waste declines, landfill will thus become cheaper than incineration. The MCRRF cost models make assumptions about waste volumes and types of waste that will continue to flow to the incinerator through 2040. However, they assume meager progress in waste reduction over that time frame. As discussed above, DEP estimates that the County’s Zero Waste efforts will result in just an additional 8 percent reduction in waste by 2026.

Costs of upgrading pollution controls at the MCRRF are not quantified

In addition to these higher-than-projected annual costs that have already been documented, add in about $95 million in estimated costs to bring the incinerator up to emissions standards currently required of all new incineration projects.\(^{237}\) This would buy the SCR technology that would remove nitrogen oxides from emissions to 45 ppm and add real-time monitoring of the 20 pollutants which are currently only tested for once a year at the MCRRF. Further, to reduce our emissions of highly toxic

235 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020, p.16. drive.google.com/file/d/1MqFlk7YIr0bbze2ohj9Nx-Gk0x40y/view

236 Id.

237 The $95 million cost estimate was for bringing the Wheelabrator Baltimore trash incinerator up to the modern standards of new incinerators plus continuous emissions monitoring for an additional 16 pollutants, and real-time online reporting (MCRRF already does real-time monitoring). See “City of Baltimore Recycling and Solid Waste Management Master Plan – Draft Master Plan,” June 5, 2020, p.62. publicworks.baltimorecity.gov/sites/default/files/LWBB_Draft%20Master%20Plan_E-5-20.pdf Details on the Baltimore Clean Air Act are available at www.cleanairbmore.org/cleanairact
sulfur dioxide, lead, cadmium, dioxins, and mercury, the county would also need to budget at least $1.5 million more annually for additional lime slurry and activated carbon injection systems such as those now required by the City of Baltimore, contractually requiring Wheelabrator Baltimore to meet several of the requirements of the Baltimore Clean Air Act. We also must factor in the indirect costs to human health of $55 million (from fine particulate matter), as referenced above, plus additional harm to health from other pollutants. This is indeed a heavy price tag when better, safer alternatives are available.

Electricity Sales Revenues and Renewable Energy Credits (RECs)

The incineration cost projections that HDR developed assumed ongoing revenue from electricity and renewable energy credit (REC) sales equating to $28.46/ton, although the approved FY21 budget reflects an anticipated reduction in revenue from electricity sales compared to the previous year’s budget. Electricity sales are used as offsets in the MCRRF budget, so reduced electricity sales and reduced renewable energy credit revenue increases the net cost of incineration.

It’s unreasonable to expect REC revenue to continue. This $3-7 million a year will vanish as soon as legislation passes to disqualification trash incineration as a Tier 1 renewable energy source under Maryland’s Renewable Portfolio Standard law. Legislation to remove these credits has passed the state senate twice and could reasonably be expected to pass into law in the next 1-2 years.

Cost Projections for Ash Disposal and Out-of-County Haul

Costs for transfer and disposal of incinerator ash and non-processible and by-pass wastes are part of the incinerator’s operating costs budget. Table 14-2 in the HDR Task 9 Report projects processing costs of $37/ton if operating the incinerator until 2026, and $43/ton if trying to operate it until 2040. The projected $37/ton operating cost for the 2026 closure scenario includes an assumption that the ash transfer and disposal and non-processible and bypassed waste costs total $18.93/ton, or approximately $11,720,000 annually. Task 9’s Table 5-1 shows that cost assumptions are partially derived from a $55/ton cost for non-processible waste and a $53/ton cost for bypass waste.

However, it appears from the approved county budget over the last several fiscal years that these costs are increasing annually as the volume and cost of non-processible waste continues to increase. The FY21 budget for out-of-county hauling (which includes transfer and disposal of ash and non-processible wastes and by-pass wastes) includes an increase of $1.293 million over FY20, bringing the FY21 total to $15.2 million. The budget does not break down the total or incremental increase cost into ash, by-pass, and non-processible categories, but overall, this $15.2 million total appears to already exceed the

238 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020, pp.17-18. drive.google.com/file/d/1MqFlk7JYrb0bbze20hi9NzGjv440x/view (The report states, “The model also assumes the electric rate and the value of the RECs do not increase going forward.” While this might lead to a cost conservative estimate if electric revenue was increasing, that has not been the observed trend, so the stable price assumption might lead to overestimating the offsetting electric revenue.)

240 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020, pp.19-23. drive.google.com/file/d/1MqFlk7JYrb0bbze20hi9NzGjv440x/view (Tables 5-1 and 5-2 include the assumptions in the $37/ton cost, but it is not clear from the tables which assumptions were changed to develop the $43/ton processing cost used in Table 14-2.)

cost assumptions used to develop the projections in Table 14-2 in HDR’s Task 9 report. This raises questions about whether newer cost estimates are needed to reflect current and more accurate numbers for out-of-county disposal for ash, non-processible, and by-pass waste.

Northeast Maryland Waste Disposal Authority Fees

This may be another category in which cost estimates have room for adjustment to better reflect current data or best estimates.

HDR’s per ton processing cost included in Table 14-2 includes fees paid to the Northeast Maryland Waste Disposal Authority as calculated in Table 5-2 under the “miscellaneous costs” category. The total for miscellaneous costs in Table 5-2 is assumed to be $380,000 and includes “consultant expenses, litigation, and Authority fee.” It is not readily apparent how the Authority fee is calculated, but Authority fees have been well over $380,000 since 2006. Legal fees appear to be another significant expense of the Authority in FY 2021 which may not be reflected in the HDR assumptions. In one recent example, at the November 2, 2020 public meeting of the Authority’s board, the members (including DEP’s Mr. Wainer representing Montgomery County) approved an increase of a $150,000 contract to $200,000 for Gordon Feinblatt LLC, one of its on-call law firms, as outside counsel in the matter of Covanta Montgomery Inc. v. Northeast Maryland Waste Disposal Authority (Case No. 482900-V) regarding Covanta’s claim for breach of contract with respect to the calculation of the ash reduction penalty under the Service Agreement for the Montgomery County Resource Recovery Facility (RRF).

Figure 8-3: Montgomery County membership fees to NMWDA

![Montgomery County Membership Fees to NMWDA](image-url)

C. Evaluating Costs of Waste Management Options

Continued Use of the RRF or Development of Site 2 Landfill Results in a Temporary Solution

Cost assumptions used by HDR to develop Options 1 and 2 (continued use of the incinerator through either 2026 or 2040) require lead time and a commitment to accepting a wide range of assumptions before determining final costs. If, in twenty years, the County wanted to continue to operate the incinerator, additional unknown capital improvement projects would need to be scoped out and performed well in advance of 2040 in order to continue to operate beyond then – even while taxpayers were still paying off the previous round of bonds and relying on an aged incinerator – as old at that time (45 years) as the oldest around today. In fact, between 2000 and 2020, 44 trash incinerators in the U.S. closed for good; their average age just 23 years. MCRRF will be 26 come May 2021, and five years ago, was already experiencing more uncontrolled fires than any in Covanta’s fleet, plus reduced operation due to poor operations and maintenance. After spending millions, and before new bonds are paid off, the county would be faced with another decision of where to send its waste, whether in 2040 or any sooner year when the costs to keep refurbishing an aging plant become insurmountable.

The landfill options

Option 3 – development of the Site 2 Landfill – is also a temporary solution to the County’s waste disposal needs, unless the county is prepared to endlessly expand the landfill, as many do. It will leave future taxpayers needing to scope out and develop new solid waste management solutions while managing a facility that is nearing the end of its capacity and preparing for closure and post-closure care. It also poses major short-term costs and uncertainties (community opposition and litigation) and future liabilities (contamination of the aquifer) that could lead to costly removal of waste as is occurring at the nearby coal ash dump.

Options 4 and 5 – long-hauling solid waste by truck or rail – open up the potential for the County to approach the year 2040 with negotiable waste hauling and disposal contracts and access to more than sufficient remaining disposal capacity. Once hauling contracts are in place and a decision to close the incinerator has been made, the County can instead focus for the next twenty years on meaningfully reducing waste through the many programs and policies recommended by HDR and the Zero Waste Task Force. With out of county hauling for the residual waste while Zero Waste options are implemented, the County will not be forced to find or finance another new solid waste disposal option at the end of the twenty-year planning period. In other words, Options 1-3 delay the decision and are

difficult to turn back from once capital investments are underway, while Options 4 and 5 may present longer-term and more flexible solutions.

Continued Use of the Incinerator or Development of Site 2 Landfill Has Significant Unquantified Health, Environmental, and Opportunity Costs

HDR and DEP’s cost-accounting and estimates fail to internalize the true health and environmental costs of continuing to operate the incinerator, or of building a new landfill over a sole-source aquifer in Montgomery County. MEBCalc’s analysis found that the true health and environmental cost of incineration is $285.92/ton, while landfills ranged from $93.52 – $123.51/ton. As documented in Chapter 2, the externalized public health cost from just fine particulate matter (PM2.5) from the Wheelabrator Baltimore incinerator was estimated to reach $55 million annually. The environmental costs from a linear use it, burn it, bury it approach to waste management are not yet fully accounted for, but any system that the County chooses must have waste reduction incentives designed into the system. Using tools such as MEBCalc that monetize lifecycle health and environmental costs of the different waste management scenarios can and should also help inform decisions so that actions minimize negative safety, health, and climate impacts while maximizing cost efficiency and waste-reduction.

Additionally, there is an opportunity cost and risk of missed options for every additional year that goes by without pursuing Zero Waste strategies. Even the minimal investment to keep the incinerator operating for the next five years amounts to over $12 million that could cover most of the cost of the material recovery facility needed to extract more recyclables from county trash. Rather than invest in costly new landfill or incinerator infrastructure, county resources would be best spent immediately directing resources to Zero Waste solutions and discontinuing incineration.

The Only Way to Accurately Estimate Truck or Rail Haul Costs: Issue an RFQ

There is significant uncertainty in the above cost projections for continuing to operate the incinerator through 2040 or developing Site 2 landfill. Reducing the cost and timing uncertainty for operating the incinerator or developing a new landfill may require first committing to an option and then initiating capital and operating cost-share negotiations or landfill development plans. In contrast, uncertainty around the cost of long hauling the waste to a rural, permitted landfill can be reduced by developing and issuing a detailed RFQ immediately. We know how much the County currently budgets for solid waste disposal costs. We can obtain an estimate from haulers and permitted landfills for transfer and disposal of current and projected waste volumes and use that to develop a per ton cost estimate for handling the County’s residual waste going forward. That total annual cost and estimated health and environmental impacts can be compared to the estimates of continuing to use the incinerator or developing the Site 2 landfill (although both of those options will still contain considerable cost uncertainty until contract negotiations for construction and operation have been completed, as discussed above).

We obtained some informal estimates that demonstrate that truck hauling is a feasible and preferred option. The next step is to develop vendor and project criteria and to issue an RFQ to ascertain the accurate and current costs to transfer Montgomery County’s remaining waste to a permitted landfill outside of the County.
Cost Estimates for Rail Haul and Truck Haul from Montgomery County to Regional Landfills

Trucking: The per ton cost of trucking waste from Montgomery County to regional landfills in Southern Virginia, Eastern Ohio and/or Southwestern Pennsylvania is known. Local private hauling and waste management companies were contacted to provide informal estimates, which ranged from $50-$54 per ton, including hauling and landfill tip fees. They are available to respond to a County RFP for an interim 3-5 year contract or longer-term contract for 5-10 years at this time, with no minimum amount of waste required (i.e. no “put or pay” clause). This estimate is comparable to the prices in the HDR report to the Montgomery County DEP, which estimates truck haul costs to be $56 per ton.\(^{249}\) DEP should issue an RFQ to obtain current, accurate quotes on costs and readiness from vendors to meet the hauling and disposal needs of the County.

Rail Haul: The cost per ton of rail hauling waste to regional landfills is less clear. Mike Krauss, railroad waste hauling advisor to the Institute for Local Self-Reliance and Sugarloaf Citizens Association, asserts that rail haul from the County may cost up to $6 dollars more than the current cost of the incinerator (as of 2019).\(^{250}\) Krauss estimates the cost of operating the incinerator at $65.05 per ton plus $2-5 per ton for ash disposal, or $67-$72, which would bring his estimate for rail haul to $73-78/ton.

Krauss maintains that this gap may be readily reduced or eliminated through negotiations with rail haul vendors. For example, a major cost will be to reconfigure the land between the incinerator and rail lines in order to expand the site to manage the number of containers needed for the flow of materials. Krauss states that these companies could pay for the infrastructure needs in exchange for a long-term contract with the County, even assuming a declining amount of waste materials being generated by the County as the comprehensive composting, reuse and recycling programs are introduced. This could reduce the cost of rail haul substantially.

The only way to confirm costs is for the County to meet with rail haul companies to negotiate terms. Krauss talked to one company, which was anxious to talk to the County.\(^{251}\) The County has not followed up.

\(^{250}\) Call with Mike Krauss, Jan. 2, 2021.

\(^{251}\) Tunnel Hill Partners is the largest provider of rail served disposal of MSW in the U.S. In an exchange of phone calls and emails I have established a high level of interest on the part of Tunnel Hill in providing the required service. Tunnel Hill is ready to send their senior manager to the site to make his own inspection. On account of the volume, they are interested. They also shared with me that they are prepared to invest in the equipment and transfer station re-design that may be advisable to create an efficient operation (assuming a long-term contract).
Table 8-3: Waste Disposal Options
(best options in green; worst in red)

<table>
<thead>
<tr>
<th>Evaluation Factors</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to Lower Cost by Reducing Waste</td>
<td>No, due to fixed costs, including maintaining unused boiler in standby</td>
<td></td>
<td>Somewhat (county would have some fixed costs and liabilities)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accommodates Zero Waste</td>
<td>Disincentivizes diversion as most efficient operation is with three boilers</td>
<td>Incentives diversion to maximize landfill capacity, minimize cost</td>
<td>Incentives diversion to minimize cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHG Emissions</td>
<td>2,024 lbs of CO₂ equivalents (CO₂e) per ton of waste</td>
<td>779 – 1,220 lbs of CO₂ equivalents (CO₂e) per ton of waste</td>
<td>far less if organic materials diverted or stabilized prior to disposal; transportation emissions average about 3% in any scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Impacts</td>
<td>Most toxic option for county residents and for landfill community; unquantified health impacts from air emissions and ash residue disposal</td>
<td>Potential risk to sole-source aquifer</td>
<td>Mitigated with remote location, site selection criteria, and diversion/processing of organic materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>Ash currently landfilled in majority-Black communities; clustering of facilities in Dickerson; downwind impacts on diverse county population</td>
<td>Clustering of facilities in Dickerson</td>
<td>Can select landfill in rural area that meets environmental justice selection criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to Provide Long-Term Solution</td>
<td>Annual volume larger than needed as county reduces waste, but limited to five years</td>
<td>Annual volume larger than needed as county reduces waste, but lifetime limited by aging of facility; vulnerable to abrupt closure</td>
<td>Unavailable until built, (could take 10 years depending on litigation); 30-year projected lifetime if built (depends on waste volumes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertainty in Cost Estimates</td>
<td>Highly variable cost estimates depend on electricity markets and outcomes of contract negotiations for share of capital improvements; decommissioning costs; pending disqualification of renewable energy credits will remove $2.7 million/year in revenue</td>
<td>Med-High - depends on potential litigation, construction delays, final costs once project is bid</td>
<td>Low once contract is in place; opportunity to renegotiate costs incrementally as tonnage decreases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Environmental Impacts and Considerations</td>
<td>Leaves county in search of another solution in next five years</td>
<td>Leaves county in search of another solution in <20 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Costs</td>
<td>$12-27 million in repairs</td>
<td>$37-$73 million in repairs</td>
<td>$100-107 million (unclear if includes cost of access road, 30-year post closure care)</td>
<td>$70 million for new rail car fleet (HDR)</td>
<td>$~1M+ to modify transfer station to accommodate long haul</td>
</tr>
<tr>
<td>Add’l Cap. Costs to Protect Health & Environment</td>
<td>$60-95 million plus an estimated $1.5 million/year to come up to modern air pollution standards and for continuous monitoring of additional pollutants that are currently only tested annually</td>
<td>Material recovery (removing more recyclables) and biological treatment (anaerobic digestion for biological stabilization) (MRBT) can be privately financed at no cost to county, and made available for $50-60/ton, dramatically reducing waste to landfill and minimizing landfill impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Cost (TOTAL)</td>
<td>$72-122 million plus $1.5 million/year</td>
<td>$97-168 million plus $1.5 million/year</td>
<td></td>
<td>$~100-107 million</td>
<td>$70-86 million</td>
</tr>
<tr>
<td>Operating Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Estimated Cost/Ton255</td>
<td>$53.50/ton (HDR) $64.36/ton (2020 invoice)</td>
<td>$59.50/ton (HDR) $59.31/ton (DEP) $64.36/ton (2020 invoice)</td>
<td>$44.50/ton (HDR) $59.56/ton (DEP)</td>
<td>$73-78/ton</td>
<td>$50-59/ton</td>
</tr>
</tbody>
</table>

252 MEBCalc Life Cycle Analysis (see Table 4-2); EPA eGRID 2018 (see Tables 3-1 and 3-2); Transportation emissions, Chapter 3(J).

253 HDR, “Task 9: Develop Options for Collection and Disposal of ‘What’s Left’ – Final Technical Memorandum #5,” Feb. 2020. drive.google.com/file/d/1mAfGk7iYr6Bbbze20huj9NhG0xk40x/view (not good condition quote from p.19; $12-17M on p.20; $37-63M on p.21, $100M, $70M, & $1M figures from Table 14-2 on p.83); $73M high end for Option 2, $107M for Option 3 and $86M for Option 4 from Willie Wainer & Marilu Enciso, Montgomery County Department of Environmental Protection, “What’s left” spreadsheet in Excel workbook generated July 15, 2020 through September 25, 2020 titled “RRMM Short and Middle Term PrioritiesV15.xlsx”

255 Note Error! Bookmark not defined. supra. (HDR data from Table 14-2 consisting transfer station, processing and transportation costs; DEP data from “What’s left” spreadsheet); Note 116 supra. (2020 invoices); Options 4 & 5 from rail haul consultant, Mike Krauss and other sources cited in section in Chapter 8’s section on Cost Estimates for Rail Haul and Truck Haul.
Chapter 9: The path forward

After careful evaluation of the various options, we are recommending the following path forward:

1) Starting in calendar year 2021, the county should accurately account for waste diversion.
 a. Stop counting ash as “beneficial use” in county recycling percentages.256
 b. Correct recycling reporting by not counting alternative daily cover (ADC) at landfills, or material sent to material recovery facilities (MRFs) that is not ultimately recycled.

2) Seek County Council approval for the following changes to the Waste Disposal and Service Agreements, as required in the County’s Ten-Year Solid Waste Management Plan.257,258

3) On or before Earth Day (4/22/2021), issue the following RFPs and notices:
 a. Issue an RFP for truck hauling to a landfill, utilizing the exclusion and inclusion criteria outlined within this report in order to make the most responsible choice.259
 b. Give 180-day notice to the Northeast Maryland Waste Disposal Authority (NMWDA) to end the incineration contract (by 10/18/2021, if notice is given on 4/22/2021).
 c. Issue request for proposals (RFP) for a new material recovery facility (MRF) with material recovery and biological treatment (MRBT) capacity.

4) On Earth Day, announce aggressive pursuit of Zero Waste strategies ready to be rolled out in 2021. Priority programs, even if just starting as pilots in 2021, should include unit-based pricing, aerobic composting of source separated organics, and a deconstruction mandate for reusable building materials.

By October 2021, cease use of the MCRRF and switch to truck hauling to one or more existing landfills. Once MRBT is operating, switch to only sending reduced, stabilized residuals to landfill.

256 Delegate Charkoudian and Senator Pinsky have introduced legislation (House Bill 280 and Senate Bill 304 in the 2021 legislative session) that would strip away these recycling credits from landfilling incinerator ash. These credits inflate the county’s recycling percentage by about 14%.

257 “Resolution to Extend Covanta Montgomery’s Service Agreement for the Resource Recovery Facility and Transfer Station,” March 20, 2012 memo from Senior Legislative Analyst, Keith Levchenko, to Montgomery County Council’s Transportation, Infrastructure, Energy & Environment Committee. www.energyjustice.net/files/md/montgomery/changeorder.pdf Page 1 states: “the County’s Solid Waste Management Plan requires Council approval for material changes to the waste disposal and service agreements. The Council must approve or disapprove the proposed change within 30 days or two regular Council work sessions (whichever is longer), unless the Council approves a resolution extending the time allowed for Council action. If the Council takes no action during this time, the proposed change is automatically approved.”

258 Montgomery County Comprehensive Solid Waste Management Plan for the Years 2012 through 2023.”

259 Note that in our interviews with landfill managers and hauling companies that can serve the county, we learned that, if offered long-term contracts, even with no minimum “put or pay” clause, landfills could offer prices cheaper than the county pays for incineration, even when factoring in higher transportation costs. Issuing an RFP will reveal these prices, which will be lower than any spot market tipping fee data the county may be looking at. If choosing a landfill with rail access, like Maplewood in VA, the county might want to issue a request for quote (RFQ) or request for information (RFI) to assess cost and to understand how long it would take to build a rail transfer station. A private hauler may find it worthwhile to finance the building of any needed track or rail transfer station. Use this information to evaluate whether rail or truck makes more sense for the county, long-term. If the rail transfer station is viable in terms of timing and cost, issue an RFP for a rail transfer station and switch from truck to rail once the rail transfer station is ready.
Chapter 10: Data needs

A variety of conflicting numbers have been presented by HDR and DEP on costs and climate impacts. To get a better understanding of these and other assumptions, more transparency is needed. The following is a list of documents or supporting documentation that we would like to see disclosed in order to have a more informed dialogue.

1. The Excel spreadsheets with WARM analysis data used to generate DEP’s climate impacts analysis.

2. DEP’s Material Flow Diagram for 2018 (and any newer year available).

3. Any updates to DEP’s “Average Annual Unit Cost Trends in Montgomery County Solid Waste Management” report since 2015.

4. All background numbers used in HDR’s reports, including any data HDR obtained from DEP or the Northeast Maryland Waste Disposal Authority, including:
 a. The sources for Table 14-2 in HDR’s Task 9 report.
 b. “Calendar Year 2017 Capture Model” (This is referred to several times in HDR reports, but not fully cited.)

5. Change orders relating to the county’s contracts with the Northeast Maryland Waste Disposal Authority, including the one referenced in HDR’s Task 9 report (p.17) where it states that “the County and NMWDA are currently negotiating a Change Order to the existing Service Agreement, which may impact the estimated cost and revenue projections included in this report.”

6. Annual fees paid by the county to the Northeast Maryland Waste Disposal Authority, and the basis for the calculation of these fees.

7. A breakdown of what “other materials” are in DEP’s “RRMM Short and Middle Term PrioritiesV15.xlsx” file, graphs worksheet, and sources for their EJ analysis in the same file.

8. Northeast Maryland Waste Disposal Authority board packets for the past five years. (DEP’s Mr. Wainer, as an Authority Board Member, would have these), including documents related to cost increases for Montgomery County, such as these from the November 2020 board meeting:
 a. 2020-7-1 Contract Amendment for ARM Group Regarding Design and Construction Work for Water Intake at the RRF and Other Efforts (contract increase of $860K)
 b. 2020-7-2 Budget Amendment for the Montgomery County RRF Account (raising MCRRF account to $3,836,258 for FY 2021)
 c. 2020-7-5 Amendments to On-Call Engineer Contracts ($100K for HDR Engineering for supporting MCRR; $550K for SCS for transfer station improvements and demolition work at Gude Landfill)
 d. 2020-7-6 Contract Amendment for Gordon Feinblatt LLC Regarding Ash Residue Matter ($150K increase in defense of Covanta litigation)
 e. 2020-7-9 Budget Amendment for Montgomery County LFGE Account ($200K increase to complete demolition of the Gude LFGTE project)
Attachments

 www.energyjustice.net/files/dc/2020-10-19ChehLetterToDPW.pdf

2. “Landfills are bad, but incinerators (with ash landfilling) are worse,” Energy Justice Network factsheet, June 2019.
 www.energyjustice.net/files/incineration/incineration_vs_landfills.pdf

 www.energyjustice.net/incineration/closures.pdf

 www.energyjustice.net/incineration/CovantaWP6.pdf

 www.energyjustice.net/incineration/healthstudies.pdf

 www.energyjustice.net/incineration/CovantaWP4.pdf

 www.energyjustice.net/incineration/factcheck4.pdf